Properties

Label 2-8800-1.1-c1-0-81
Degree $2$
Conductor $8800$
Sign $1$
Analytic cond. $70.2683$
Root an. cond. $8.38262$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·7-s − 2·9-s − 11-s + 2·13-s + 2·19-s + 4·21-s + 9·23-s − 5·27-s + 4·29-s − 5·31-s − 33-s + 9·37-s + 2·39-s + 2·41-s − 6·43-s − 4·47-s + 9·49-s + 6·53-s + 2·57-s + 5·59-s − 8·63-s − 13·67-s + 9·69-s + 71-s − 14·73-s − 4·77-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.51·7-s − 2/3·9-s − 0.301·11-s + 0.554·13-s + 0.458·19-s + 0.872·21-s + 1.87·23-s − 0.962·27-s + 0.742·29-s − 0.898·31-s − 0.174·33-s + 1.47·37-s + 0.320·39-s + 0.312·41-s − 0.914·43-s − 0.583·47-s + 9/7·49-s + 0.824·53-s + 0.264·57-s + 0.650·59-s − 1.00·63-s − 1.58·67-s + 1.08·69-s + 0.118·71-s − 1.63·73-s − 0.455·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8800\)    =    \(2^{5} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(70.2683\)
Root analytic conductor: \(8.38262\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.232052473\)
\(L(\frac12)\) \(\approx\) \(3.232052473\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good3 \( 1 - T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 9 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 + 5 T + p T^{2} \)
37 \( 1 - 9 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 5 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 + 13 T + p T^{2} \)
71 \( 1 - T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 14 T + p T^{2} \)
89 \( 1 + 13 T + p T^{2} \)
97 \( 1 - 19 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.77173300291814190695834897021, −7.35803936263715590141987954660, −6.38101157222320412649214341409, −5.52149830778961358957909895997, −5.01858770943667581245859835212, −4.30312075205520165788251158272, −3.31744081581445262537376748155, −2.68992511387026479126151876075, −1.77309155415494072493662094200, −0.889538454615368568189074247395, 0.889538454615368568189074247395, 1.77309155415494072493662094200, 2.68992511387026479126151876075, 3.31744081581445262537376748155, 4.30312075205520165788251158272, 5.01858770943667581245859835212, 5.52149830778961358957909895997, 6.38101157222320412649214341409, 7.35803936263715590141987954660, 7.77173300291814190695834897021

Graph of the $Z$-function along the critical line