L(s) = 1 | + (0.582 + 0.422i)3-s + (−0.309 + 0.951i)5-s + (3.38 − 2.45i)7-s + (−0.767 − 2.36i)9-s + (−2.41 + 2.27i)11-s + (−1.86 − 5.75i)13-s + (−0.582 + 0.422i)15-s + (2.01 − 6.20i)17-s + (0.598 + 0.434i)19-s + 3.01·21-s + 5.13·23-s + (−0.809 − 0.587i)25-s + (1.21 − 3.75i)27-s + (−1.68 + 1.22i)29-s + (0.348 + 1.07i)31-s + ⋯ |
L(s) = 1 | + (0.336 + 0.244i)3-s + (−0.138 + 0.425i)5-s + (1.27 − 0.929i)7-s + (−0.255 − 0.786i)9-s + (−0.727 + 0.686i)11-s + (−0.518 − 1.59i)13-s + (−0.150 + 0.109i)15-s + (0.488 − 1.50i)17-s + (0.137 + 0.0997i)19-s + 0.657·21-s + 1.06·23-s + (−0.161 − 0.117i)25-s + (0.234 − 0.722i)27-s + (−0.312 + 0.227i)29-s + (0.0625 + 0.192i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.652 + 0.758i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.652 + 0.758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.58626 - 0.727841i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.58626 - 0.727841i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 + (2.41 - 2.27i)T \) |
good | 3 | \( 1 + (-0.582 - 0.422i)T + (0.927 + 2.85i)T^{2} \) |
| 7 | \( 1 + (-3.38 + 2.45i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (1.86 + 5.75i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-2.01 + 6.20i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-0.598 - 0.434i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 5.13T + 23T^{2} \) |
| 29 | \( 1 + (1.68 - 1.22i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (-0.348 - 1.07i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (5.75 - 4.18i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-3.25 - 2.36i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + 6.29T + 43T^{2} \) |
| 47 | \( 1 + (-7.47 - 5.43i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-2.40 - 7.38i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-4.98 + 3.62i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-4.53 + 13.9i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 - 5.53T + 67T^{2} \) |
| 71 | \( 1 + (2.74 - 8.43i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-6.54 + 4.75i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-0.176 - 0.542i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-4.70 + 14.4i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + 1.33T + 89T^{2} \) |
| 97 | \( 1 + (-3.07 - 9.47i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13792837364093733746771430785, −9.286562369387877004755627768712, −8.100387500968807967149827407787, −7.59693123171105100978775462223, −6.87986592205511703249113999262, −5.31238181511774780184331274604, −4.81125173617394953096756642075, −3.48804512818210316982992866616, −2.64505738687594244955938383382, −0.847435964789743550745600213937,
1.68403645475564312576439353745, 2.45136883825335386623294010873, 4.00441703234025031417956659653, 5.14543855580491335843071385946, 5.57506410491336356031720755297, 7.01944629373919885475099292008, 7.957319430565084941940268481663, 8.550860398178052068059370273543, 9.035676302575786210648255160556, 10.37691802098720086999250262946