L(s) = 1 | + (2.68 + 1.94i)3-s + (−0.309 + 0.951i)5-s + (0.150 − 0.109i)7-s + (2.46 + 7.59i)9-s + (3.31 − 0.00161i)11-s + (0.931 + 2.86i)13-s + (−2.68 + 1.94i)15-s + (1.58 − 4.86i)17-s + (−3.93 − 2.85i)19-s + 0.616·21-s − 6.20·23-s + (−0.809 − 0.587i)25-s + (−5.10 + 15.7i)27-s + (0.154 − 0.111i)29-s + (−2.49 − 7.66i)31-s + ⋯ |
L(s) = 1 | + (1.54 + 1.12i)3-s + (−0.138 + 0.425i)5-s + (0.0568 − 0.0413i)7-s + (0.822 + 2.53i)9-s + (0.999 − 0.000485i)11-s + (0.258 + 0.794i)13-s + (−0.692 + 0.503i)15-s + (0.383 − 1.18i)17-s + (−0.902 − 0.655i)19-s + 0.134·21-s − 1.29·23-s + (−0.161 − 0.117i)25-s + (−0.982 + 3.02i)27-s + (0.0286 − 0.0207i)29-s + (−0.447 − 1.37i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0452 - 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0452 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.93182 + 1.84628i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.93182 + 1.84628i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 + (-3.31 + 0.00161i)T \) |
good | 3 | \( 1 + (-2.68 - 1.94i)T + (0.927 + 2.85i)T^{2} \) |
| 7 | \( 1 + (-0.150 + 0.109i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (-0.931 - 2.86i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-1.58 + 4.86i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (3.93 + 2.85i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + 6.20T + 23T^{2} \) |
| 29 | \( 1 + (-0.154 + 0.111i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (2.49 + 7.66i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-2.07 + 1.50i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-7.24 - 5.26i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 7.83T + 43T^{2} \) |
| 47 | \( 1 + (4.28 + 3.11i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-0.401 - 1.23i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (0.480 - 0.348i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (0.350 - 1.07i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 - 1.73T + 67T^{2} \) |
| 71 | \( 1 + (4.03 - 12.4i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (0.723 - 0.525i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (4.11 + 12.6i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-5.23 + 16.1i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + 7.22T + 89T^{2} \) |
| 97 | \( 1 + (-1.04 - 3.22i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04483410762720614833613031489, −9.389680897319576086152943774926, −8.929200649798903438596672537458, −7.937542287316089442352496669876, −7.22574854465900039873845093619, −6.00865625946356339838818426723, −4.42333477537204847528790048591, −4.12104974436510163872097377133, −2.98794694508182644931557561963, −2.05814959903646051779388004882,
1.22484325294029935441966972292, 2.12477193706392703618471658325, 3.48713829459794296376858009440, 4.06622195265540196147333618227, 5.89379823078493978567366713799, 6.60704837246430178128058040094, 7.69499644516899247968027728160, 8.243272248001794890254830872120, 8.801365216939757044529166745781, 9.645635387027343630773070441178