Properties

Label 2-880-1.1-c1-0-2
Degree $2$
Conductor $880$
Sign $1$
Analytic cond. $7.02683$
Root an. cond. $2.65081$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.82·3-s − 5-s + 2·7-s + 5.00·9-s − 11-s − 6.82·13-s + 2.82·15-s + 1.17·17-s − 5.65·21-s − 2.82·23-s + 25-s − 5.65·27-s + 7.65·29-s + 2.82·33-s − 2·35-s + 3.65·37-s + 19.3·39-s + 6·41-s + 6·43-s − 5.00·45-s + 2.82·47-s − 3·49-s − 3.31·51-s + 0.343·53-s + 55-s + 9.65·59-s + 13.3·61-s + ⋯
L(s)  = 1  − 1.63·3-s − 0.447·5-s + 0.755·7-s + 1.66·9-s − 0.301·11-s − 1.89·13-s + 0.730·15-s + 0.284·17-s − 1.23·21-s − 0.589·23-s + 0.200·25-s − 1.08·27-s + 1.42·29-s + 0.492·33-s − 0.338·35-s + 0.601·37-s + 3.09·39-s + 0.937·41-s + 0.914·43-s − 0.745·45-s + 0.412·47-s − 0.428·49-s − 0.464·51-s + 0.0471·53-s + 0.134·55-s + 1.25·59-s + 1.70·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(880\)    =    \(2^{4} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(7.02683\)
Root analytic conductor: \(2.65081\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{880} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 880,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7029115193\)
\(L(\frac12)\) \(\approx\) \(0.7029115193\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
good3 \( 1 + 2.82T + 3T^{2} \)
7 \( 1 - 2T + 7T^{2} \)
13 \( 1 + 6.82T + 13T^{2} \)
17 \( 1 - 1.17T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 2.82T + 23T^{2} \)
29 \( 1 - 7.65T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 3.65T + 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 - 6T + 43T^{2} \)
47 \( 1 - 2.82T + 47T^{2} \)
53 \( 1 - 0.343T + 53T^{2} \)
59 \( 1 - 9.65T + 59T^{2} \)
61 \( 1 - 13.3T + 61T^{2} \)
67 \( 1 - 4.48T + 67T^{2} \)
71 \( 1 - 11.3T + 71T^{2} \)
73 \( 1 + 6.82T + 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 - 9.31T + 89T^{2} \)
97 \( 1 + 7.65T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.29337745529042836686368322725, −9.647300007049299126630998049989, −8.215925618402231751084931160980, −7.45947244689422514969178847370, −6.68526246485527454574842777213, −5.59308881404492628698672472052, −4.93436284945635794475446698267, −4.24678817438831924093805245995, −2.42932451957451320618097003376, −0.71846536667799770505343771019, 0.71846536667799770505343771019, 2.42932451957451320618097003376, 4.24678817438831924093805245995, 4.93436284945635794475446698267, 5.59308881404492628698672472052, 6.68526246485527454574842777213, 7.45947244689422514969178847370, 8.215925618402231751084931160980, 9.647300007049299126630998049989, 10.29337745529042836686368322725

Graph of the $Z$-function along the critical line