Properties

Label 2-87e2-1.1-c1-0-54
Degree $2$
Conductor $7569$
Sign $1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.30·2-s + 3.33·4-s − 3.03·5-s − 4.39·7-s + 3.07·8-s − 7.01·10-s − 5.68·11-s + 3.95·13-s − 10.1·14-s + 0.441·16-s − 3.21·17-s + 3.61·19-s − 10.1·20-s − 13.1·22-s − 2.69·23-s + 4.21·25-s + 9.12·26-s − 14.6·28-s + 0.823·31-s − 5.13·32-s − 7.42·34-s + 13.3·35-s + 5.60·37-s + 8.35·38-s − 9.34·40-s + 0.558·41-s + 12.7·43-s + ⋯
L(s)  = 1  + 1.63·2-s + 1.66·4-s − 1.35·5-s − 1.66·7-s + 1.08·8-s − 2.21·10-s − 1.71·11-s + 1.09·13-s − 2.71·14-s + 0.110·16-s − 0.780·17-s + 0.830·19-s − 2.26·20-s − 2.79·22-s − 0.562·23-s + 0.843·25-s + 1.78·26-s − 2.76·28-s + 0.147·31-s − 0.907·32-s − 1.27·34-s + 2.25·35-s + 0.921·37-s + 1.35·38-s − 1.47·40-s + 0.0872·41-s + 1.93·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.053984462\)
\(L(\frac12)\) \(\approx\) \(2.053984462\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 - 2.30T + 2T^{2} \)
5 \( 1 + 3.03T + 5T^{2} \)
7 \( 1 + 4.39T + 7T^{2} \)
11 \( 1 + 5.68T + 11T^{2} \)
13 \( 1 - 3.95T + 13T^{2} \)
17 \( 1 + 3.21T + 17T^{2} \)
19 \( 1 - 3.61T + 19T^{2} \)
23 \( 1 + 2.69T + 23T^{2} \)
31 \( 1 - 0.823T + 31T^{2} \)
37 \( 1 - 5.60T + 37T^{2} \)
41 \( 1 - 0.558T + 41T^{2} \)
43 \( 1 - 12.7T + 43T^{2} \)
47 \( 1 - 0.129T + 47T^{2} \)
53 \( 1 - 6.88T + 53T^{2} \)
59 \( 1 + 0.745T + 59T^{2} \)
61 \( 1 - 7.17T + 61T^{2} \)
67 \( 1 - 7.06T + 67T^{2} \)
71 \( 1 + 12.6T + 71T^{2} \)
73 \( 1 + 8.81T + 73T^{2} \)
79 \( 1 - 6.99T + 79T^{2} \)
83 \( 1 - 8.90T + 83T^{2} \)
89 \( 1 - 1.51T + 89T^{2} \)
97 \( 1 + 14.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.54143310988812619637746236800, −7.11616332912364333478055145455, −6.19278976991275881339369334278, −5.82808796097530220504572876939, −4.97187744661480035237284887325, −4.07748657995570874535897574392, −3.74564039693295681149430803122, −2.94787983822079500233073119316, −2.49313691594091675791613929423, −0.51927517703419244216967404636, 0.51927517703419244216967404636, 2.49313691594091675791613929423, 2.94787983822079500233073119316, 3.74564039693295681149430803122, 4.07748657995570874535897574392, 4.97187744661480035237284887325, 5.82808796097530220504572876939, 6.19278976991275881339369334278, 7.11616332912364333478055145455, 7.54143310988812619637746236800

Graph of the $Z$-function along the critical line