Properties

Label 2-87e2-1.1-c1-0-269
Degree $2$
Conductor $7569$
Sign $-1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 3.86·7-s + 7.20·13-s + 4·16-s − 7.92·19-s − 5·25-s − 7.72·28-s − 9.34·31-s − 8.34·37-s − 3.08·43-s + 7.92·49-s − 14.4·52-s − 15.6·61-s − 8·64-s − 8.13·67-s + 16.2·73-s + 15.8·76-s − 7.51·79-s + 27.8·91-s + 3.18·97-s + 10·100-s − 18.2·103-s − 6.62·109-s + 15.4·112-s + ⋯
L(s)  = 1  − 4-s + 1.46·7-s + 1.99·13-s + 16-s − 1.81·19-s − 25-s − 1.46·28-s − 1.67·31-s − 1.37·37-s − 0.469·43-s + 1.13·49-s − 1.99·52-s − 1.99·61-s − 64-s − 0.993·67-s + 1.90·73-s + 1.81·76-s − 0.845·79-s + 2.91·91-s + 0.323·97-s + 100-s − 1.79·103-s − 0.634·109-s + 1.46·112-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 + 2T^{2} \)
5 \( 1 + 5T^{2} \)
7 \( 1 - 3.86T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 7.20T + 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + 7.92T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
31 \( 1 + 9.34T + 31T^{2} \)
37 \( 1 + 8.34T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 3.08T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 15.6T + 61T^{2} \)
67 \( 1 + 8.13T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 16.2T + 73T^{2} \)
79 \( 1 + 7.51T + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 - 3.18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.931706158776657953257937652113, −6.81846029250075444028909725520, −5.94264702094589428101017023516, −5.44478910106616633733563200060, −4.58560557516145415607200296221, −4.02758453305681070578143329897, −3.44127997653737385813060965211, −1.91164743924746212893676156274, −1.39912475947805497258548745717, 0, 1.39912475947805497258548745717, 1.91164743924746212893676156274, 3.44127997653737385813060965211, 4.02758453305681070578143329897, 4.58560557516145415607200296221, 5.44478910106616633733563200060, 5.94264702094589428101017023516, 6.81846029250075444028909725520, 7.931706158776657953257937652113

Graph of the $Z$-function along the critical line