Properties

Label 2-87e2-1.1-c1-0-157
Degree $2$
Conductor $7569$
Sign $1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.58·2-s + 4.70·4-s + 1.14·5-s + 2.76·7-s − 6.99·8-s − 2.97·10-s + 4.35·11-s + 5.62·13-s − 7.15·14-s + 8.69·16-s − 2.41·17-s + 1.87·19-s + 5.40·20-s − 11.2·22-s + 8.82·23-s − 3.67·25-s − 14.5·26-s + 12.9·28-s + 1.56·31-s − 8.52·32-s + 6.25·34-s + 3.17·35-s + 7.76·37-s − 4.84·38-s − 8.03·40-s − 3.16·41-s − 1.46·43-s + ⋯
L(s)  = 1  − 1.83·2-s + 2.35·4-s + 0.513·5-s + 1.04·7-s − 2.47·8-s − 0.940·10-s + 1.31·11-s + 1.56·13-s − 1.91·14-s + 2.17·16-s − 0.585·17-s + 0.429·19-s + 1.20·20-s − 2.40·22-s + 1.83·23-s − 0.735·25-s − 2.85·26-s + 2.45·28-s + 0.280·31-s − 1.50·32-s + 1.07·34-s + 0.537·35-s + 1.27·37-s − 0.786·38-s − 1.27·40-s − 0.493·41-s − 0.223·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.523218580\)
\(L(\frac12)\) \(\approx\) \(1.523218580\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 + 2.58T + 2T^{2} \)
5 \( 1 - 1.14T + 5T^{2} \)
7 \( 1 - 2.76T + 7T^{2} \)
11 \( 1 - 4.35T + 11T^{2} \)
13 \( 1 - 5.62T + 13T^{2} \)
17 \( 1 + 2.41T + 17T^{2} \)
19 \( 1 - 1.87T + 19T^{2} \)
23 \( 1 - 8.82T + 23T^{2} \)
31 \( 1 - 1.56T + 31T^{2} \)
37 \( 1 - 7.76T + 37T^{2} \)
41 \( 1 + 3.16T + 41T^{2} \)
43 \( 1 + 1.46T + 43T^{2} \)
47 \( 1 + 0.357T + 47T^{2} \)
53 \( 1 - 1.63T + 53T^{2} \)
59 \( 1 - 4.85T + 59T^{2} \)
61 \( 1 - 1.55T + 61T^{2} \)
67 \( 1 + 9.66T + 67T^{2} \)
71 \( 1 - 8.18T + 71T^{2} \)
73 \( 1 - 11.3T + 73T^{2} \)
79 \( 1 + 8.13T + 79T^{2} \)
83 \( 1 - 0.481T + 83T^{2} \)
89 \( 1 - 1.99T + 89T^{2} \)
97 \( 1 - 4.63T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.118866055724181330677463590423, −7.37517475227671280021571304417, −6.60902056198907690789750818426, −6.23398734153584285910798344838, −5.29937161230334962759542105389, −4.23778166775822782112252444248, −3.25603353608390205939643402296, −2.18830818436589585823428633647, −1.38579106697058137931520132756, −0.969138471386240969647744447329, 0.969138471386240969647744447329, 1.38579106697058137931520132756, 2.18830818436589585823428633647, 3.25603353608390205939643402296, 4.23778166775822782112252444248, 5.29937161230334962759542105389, 6.23398734153584285910798344838, 6.60902056198907690789750818426, 7.37517475227671280021571304417, 8.118866055724181330677463590423

Graph of the $Z$-function along the critical line