Properties

Label 2-87e2-1.1-c1-0-149
Degree $2$
Conductor $7569$
Sign $-1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 5.25·7-s + 2.45·13-s + 4·16-s − 5.89·19-s − 5·25-s + 10.5·28-s + 11.1·31-s + 5.84·37-s + 9.98·43-s + 20.5·49-s − 4.90·52-s + 12.2·61-s − 8·64-s − 16.0·67-s + 0.0544·73-s + 11.7·76-s − 17.6·79-s − 12.8·91-s + 8.85·97-s + 10·100-s + 9.47·103-s − 6.27·109-s − 21.0·112-s + ⋯
L(s)  = 1  − 4-s − 1.98·7-s + 0.680·13-s + 16-s − 1.35·19-s − 25-s + 1.98·28-s + 1.99·31-s + 0.960·37-s + 1.52·43-s + 2.93·49-s − 0.680·52-s + 1.56·61-s − 64-s − 1.95·67-s + 0.00636·73-s + 1.35·76-s − 1.98·79-s − 1.35·91-s + 0.898·97-s + 100-s + 0.933·103-s − 0.601·109-s − 1.98·112-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 + 2T^{2} \)
5 \( 1 + 5T^{2} \)
7 \( 1 + 5.25T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 2.45T + 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + 5.89T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
31 \( 1 - 11.1T + 31T^{2} \)
37 \( 1 - 5.84T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 - 9.98T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 12.2T + 61T^{2} \)
67 \( 1 + 16.0T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 0.0544T + 73T^{2} \)
79 \( 1 + 17.6T + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 - 8.85T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59628699300520965649180800692, −6.63460108567893945924794668194, −6.11499566415912530504803472664, −5.67591118116113773684498184987, −4.37379820046605395706154618229, −4.06444897393581446474919392252, −3.20849347332780585268741605872, −2.47341979823624841074061692368, −0.932877276837166783780316361544, 0, 0.932877276837166783780316361544, 2.47341979823624841074061692368, 3.20849347332780585268741605872, 4.06444897393581446474919392252, 4.37379820046605395706154618229, 5.67591118116113773684498184987, 6.11499566415912530504803472664, 6.63460108567893945924794668194, 7.59628699300520965649180800692

Graph of the $Z$-function along the critical line