Properties

Label 2-87e2-1.1-c1-0-135
Degree $2$
Conductor $7569$
Sign $1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.98·2-s + 1.92·4-s − 1.21·5-s + 0.393·7-s − 0.151·8-s − 2.41·10-s + 2.49·11-s + 3.30·13-s + 0.778·14-s − 4.14·16-s + 4.30·17-s + 5.37·19-s − 2.34·20-s + 4.93·22-s − 3.00·23-s − 3.51·25-s + 6.54·26-s + 0.756·28-s − 10.0·31-s − 7.91·32-s + 8.51·34-s − 0.479·35-s + 3.64·37-s + 10.6·38-s + 0.184·40-s + 7.82·41-s + 2.34·43-s + ⋯
L(s)  = 1  + 1.40·2-s + 0.961·4-s − 0.545·5-s + 0.148·7-s − 0.0535·8-s − 0.763·10-s + 0.751·11-s + 0.916·13-s + 0.208·14-s − 1.03·16-s + 1.04·17-s + 1.23·19-s − 0.524·20-s + 1.05·22-s − 0.625·23-s − 0.702·25-s + 1.28·26-s + 0.142·28-s − 1.79·31-s − 1.39·32-s + 1.46·34-s − 0.0810·35-s + 0.599·37-s + 1.72·38-s + 0.0292·40-s + 1.22·41-s + 0.358·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.366681907\)
\(L(\frac12)\) \(\approx\) \(4.366681907\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 - 1.98T + 2T^{2} \)
5 \( 1 + 1.21T + 5T^{2} \)
7 \( 1 - 0.393T + 7T^{2} \)
11 \( 1 - 2.49T + 11T^{2} \)
13 \( 1 - 3.30T + 13T^{2} \)
17 \( 1 - 4.30T + 17T^{2} \)
19 \( 1 - 5.37T + 19T^{2} \)
23 \( 1 + 3.00T + 23T^{2} \)
31 \( 1 + 10.0T + 31T^{2} \)
37 \( 1 - 3.64T + 37T^{2} \)
41 \( 1 - 7.82T + 41T^{2} \)
43 \( 1 - 2.34T + 43T^{2} \)
47 \( 1 - 8.54T + 47T^{2} \)
53 \( 1 - 10.9T + 53T^{2} \)
59 \( 1 + 10.2T + 59T^{2} \)
61 \( 1 - 3.72T + 61T^{2} \)
67 \( 1 - 5.14T + 67T^{2} \)
71 \( 1 - 8.09T + 71T^{2} \)
73 \( 1 - 8.75T + 73T^{2} \)
79 \( 1 - 7.29T + 79T^{2} \)
83 \( 1 - 3.74T + 83T^{2} \)
89 \( 1 + 10.4T + 89T^{2} \)
97 \( 1 + 16.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64411055089864600715419611707, −7.14421486907497351053755838795, −6.13548031328538610617570697404, −5.74035886313404988206719733297, −5.09374757071788281398070842012, −4.02775985102421895073270165454, −3.81766501046187426063376212975, −3.12100237287409694071350621978, −2.01210791770773190519884009721, −0.868341767749954934486033379859, 0.868341767749954934486033379859, 2.01210791770773190519884009721, 3.12100237287409694071350621978, 3.81766501046187426063376212975, 4.02775985102421895073270165454, 5.09374757071788281398070842012, 5.74035886313404988206719733297, 6.13548031328538610617570697404, 7.14421486907497351053755838795, 7.64411055089864600715419611707

Graph of the $Z$-function along the critical line