Properties

Label 2-87e2-1.1-c1-0-123
Degree $2$
Conductor $7569$
Sign $1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.68·2-s + 5.18·4-s − 3.11·5-s − 2.37·7-s + 8.54·8-s − 8.33·10-s − 2.60·11-s − 2.30·13-s − 6.35·14-s + 12.5·16-s + 4.83·17-s + 1.63·19-s − 16.1·20-s − 6.97·22-s + 1.18·23-s + 4.67·25-s − 6.18·26-s − 12.2·28-s + 5.78·31-s + 16.5·32-s + 12.9·34-s + 7.37·35-s + 6.89·37-s + 4.39·38-s − 26.5·40-s + 7.66·41-s + 1.88·43-s + ⋯
L(s)  = 1  + 1.89·2-s + 2.59·4-s − 1.39·5-s − 0.895·7-s + 3.02·8-s − 2.63·10-s − 0.784·11-s − 0.640·13-s − 1.69·14-s + 3.13·16-s + 1.17·17-s + 0.375·19-s − 3.60·20-s − 1.48·22-s + 0.246·23-s + 0.935·25-s − 1.21·26-s − 2.32·28-s + 1.03·31-s + 2.91·32-s + 2.22·34-s + 1.24·35-s + 1.13·37-s + 0.712·38-s − 4.20·40-s + 1.19·41-s + 0.287·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.883593383\)
\(L(\frac12)\) \(\approx\) \(4.883593383\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 - 2.68T + 2T^{2} \)
5 \( 1 + 3.11T + 5T^{2} \)
7 \( 1 + 2.37T + 7T^{2} \)
11 \( 1 + 2.60T + 11T^{2} \)
13 \( 1 + 2.30T + 13T^{2} \)
17 \( 1 - 4.83T + 17T^{2} \)
19 \( 1 - 1.63T + 19T^{2} \)
23 \( 1 - 1.18T + 23T^{2} \)
31 \( 1 - 5.78T + 31T^{2} \)
37 \( 1 - 6.89T + 37T^{2} \)
41 \( 1 - 7.66T + 41T^{2} \)
43 \( 1 - 1.88T + 43T^{2} \)
47 \( 1 - 9.30T + 47T^{2} \)
53 \( 1 - 5.17T + 53T^{2} \)
59 \( 1 - 4.90T + 59T^{2} \)
61 \( 1 + 11.5T + 61T^{2} \)
67 \( 1 + 6.97T + 67T^{2} \)
71 \( 1 + 3.73T + 71T^{2} \)
73 \( 1 - 2.39T + 73T^{2} \)
79 \( 1 - 3.75T + 79T^{2} \)
83 \( 1 - 10.5T + 83T^{2} \)
89 \( 1 - 5.70T + 89T^{2} \)
97 \( 1 - 16.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.56642209216144599213157669971, −7.18820415044976137831374794361, −6.24044363646530807898697391649, −5.71207410872747292624435922047, −4.87653677960708050048655603899, −4.33028237203314373418795855765, −3.58693147065194484515569604732, −3.02047267711475453741449472269, −2.44897044198483009649805511595, −0.808977519612790443892484021914, 0.808977519612790443892484021914, 2.44897044198483009649805511595, 3.02047267711475453741449472269, 3.58693147065194484515569604732, 4.33028237203314373418795855765, 4.87653677960708050048655603899, 5.71207410872747292624435922047, 6.24044363646530807898697391649, 7.18820415044976137831374794361, 7.56642209216144599213157669971

Graph of the $Z$-function along the critical line