Properties

Label 2-87e2-1.1-c1-0-122
Degree $2$
Conductor $7569$
Sign $1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.13·2-s − 0.714·4-s − 0.407·5-s + 2.15·7-s − 3.07·8-s − 0.461·10-s + 3.55·11-s − 0.0966·13-s + 2.44·14-s − 2.05·16-s + 0.587·17-s + 3.61·19-s + 0.291·20-s + 4.02·22-s + 8.26·23-s − 4.83·25-s − 0.109·26-s − 1.54·28-s − 1.67·31-s + 3.82·32-s + 0.665·34-s − 0.878·35-s + 0.0122·37-s + 4.10·38-s + 1.25·40-s − 9.57·41-s − 3.47·43-s + ⋯
L(s)  = 1  + 0.801·2-s − 0.357·4-s − 0.182·5-s + 0.815·7-s − 1.08·8-s − 0.145·10-s + 1.07·11-s − 0.0268·13-s + 0.653·14-s − 0.514·16-s + 0.142·17-s + 0.830·19-s + 0.0650·20-s + 0.858·22-s + 1.72·23-s − 0.966·25-s − 0.0214·26-s − 0.291·28-s − 0.301·31-s + 0.675·32-s + 0.114·34-s − 0.148·35-s + 0.00202·37-s + 0.665·38-s + 0.198·40-s − 1.49·41-s − 0.530·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.951800582\)
\(L(\frac12)\) \(\approx\) \(2.951800582\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 - 1.13T + 2T^{2} \)
5 \( 1 + 0.407T + 5T^{2} \)
7 \( 1 - 2.15T + 7T^{2} \)
11 \( 1 - 3.55T + 11T^{2} \)
13 \( 1 + 0.0966T + 13T^{2} \)
17 \( 1 - 0.587T + 17T^{2} \)
19 \( 1 - 3.61T + 19T^{2} \)
23 \( 1 - 8.26T + 23T^{2} \)
31 \( 1 + 1.67T + 31T^{2} \)
37 \( 1 - 0.0122T + 37T^{2} \)
41 \( 1 + 9.57T + 41T^{2} \)
43 \( 1 + 3.47T + 43T^{2} \)
47 \( 1 - 3.31T + 47T^{2} \)
53 \( 1 - 6.88T + 53T^{2} \)
59 \( 1 + 6.45T + 59T^{2} \)
61 \( 1 - 9.67T + 61T^{2} \)
67 \( 1 - 8.02T + 67T^{2} \)
71 \( 1 + 9.30T + 71T^{2} \)
73 \( 1 - 9.28T + 73T^{2} \)
79 \( 1 - 11.0T + 79T^{2} \)
83 \( 1 - 12.8T + 83T^{2} \)
89 \( 1 - 2.23T + 89T^{2} \)
97 \( 1 + 5.72T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.942131793242153015542718965397, −7.00930101989920149591893346148, −6.48975303716553484039083711781, −5.39712160895559853900097800738, −5.17830042835693109757991130576, −4.30424991845818340997989067029, −3.67791941925558480263583574607, −3.01436607424833740306909198472, −1.79545310967620180218745117614, −0.797915353672243560754955172632, 0.797915353672243560754955172632, 1.79545310967620180218745117614, 3.01436607424833740306909198472, 3.67791941925558480263583574607, 4.30424991845818340997989067029, 5.17830042835693109757991130576, 5.39712160895559853900097800738, 6.48975303716553484039083711781, 7.00930101989920149591893346148, 7.942131793242153015542718965397

Graph of the $Z$-function along the critical line