Properties

Label 2-87e2-1.1-c1-0-1
Degree $2$
Conductor $7569$
Sign $1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.144·2-s − 1.97·4-s − 1.55·5-s − 1.52·7-s + 0.574·8-s + 0.224·10-s − 0.767·11-s − 2.61·13-s + 0.220·14-s + 3.87·16-s − 3.51·17-s − 5.24·19-s + 3.07·20-s + 0.110·22-s − 8.49·23-s − 2.58·25-s + 0.377·26-s + 3.02·28-s + 1.41·31-s − 1.70·32-s + 0.507·34-s + 2.37·35-s + 3.00·37-s + 0.757·38-s − 0.892·40-s + 5.79·41-s − 4.29·43-s + ⋯
L(s)  = 1  − 0.102·2-s − 0.989·4-s − 0.695·5-s − 0.577·7-s + 0.203·8-s + 0.0709·10-s − 0.231·11-s − 0.726·13-s + 0.0589·14-s + 0.968·16-s − 0.852·17-s − 1.20·19-s + 0.687·20-s + 0.0236·22-s − 1.77·23-s − 0.516·25-s + 0.0741·26-s + 0.571·28-s + 0.254·31-s − 0.302·32-s + 0.0870·34-s + 0.401·35-s + 0.494·37-s + 0.122·38-s − 0.141·40-s + 0.904·41-s − 0.655·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.03395476414\)
\(L(\frac12)\) \(\approx\) \(0.03395476414\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 + 0.144T + 2T^{2} \)
5 \( 1 + 1.55T + 5T^{2} \)
7 \( 1 + 1.52T + 7T^{2} \)
11 \( 1 + 0.767T + 11T^{2} \)
13 \( 1 + 2.61T + 13T^{2} \)
17 \( 1 + 3.51T + 17T^{2} \)
19 \( 1 + 5.24T + 19T^{2} \)
23 \( 1 + 8.49T + 23T^{2} \)
31 \( 1 - 1.41T + 31T^{2} \)
37 \( 1 - 3.00T + 37T^{2} \)
41 \( 1 - 5.79T + 41T^{2} \)
43 \( 1 + 4.29T + 43T^{2} \)
47 \( 1 - 1.77T + 47T^{2} \)
53 \( 1 + 6.77T + 53T^{2} \)
59 \( 1 + 14.9T + 59T^{2} \)
61 \( 1 + 13.7T + 61T^{2} \)
67 \( 1 + 7.29T + 67T^{2} \)
71 \( 1 - 4.81T + 71T^{2} \)
73 \( 1 + 9.19T + 73T^{2} \)
79 \( 1 + 0.545T + 79T^{2} \)
83 \( 1 + 11.6T + 83T^{2} \)
89 \( 1 - 13.7T + 89T^{2} \)
97 \( 1 - 1.77T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.88389341057302874189037292380, −7.46417891849097510313099822024, −6.30645303888706680105929519189, −5.97291260506435116343020497952, −4.73551703305737182558633674617, −4.40323546433140434283213269782, −3.71120171431752794256782550654, −2.78742146934107964933500688804, −1.75490392556490331778605400544, −0.090553781074525640303318081377, 0.090553781074525640303318081377, 1.75490392556490331778605400544, 2.78742146934107964933500688804, 3.71120171431752794256782550654, 4.40323546433140434283213269782, 4.73551703305737182558633674617, 5.97291260506435116343020497952, 6.30645303888706680105929519189, 7.46417891849097510313099822024, 7.88389341057302874189037292380

Graph of the $Z$-function along the critical line