Properties

Label 2-87120-1.1-c1-0-134
Degree $2$
Conductor $87120$
Sign $-1$
Analytic cond. $695.656$
Root an. cond. $26.3753$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s − 2·13-s − 2·17-s + 4·19-s − 2·23-s + 25-s + 2·29-s − 8·31-s + 2·35-s + 6·37-s − 10·41-s + 8·43-s − 6·47-s − 3·49-s − 2·53-s + 12·59-s + 2·61-s − 2·65-s + 4·67-s + 6·71-s − 10·79-s + 4·83-s − 2·85-s + 8·89-s − 4·91-s + 4·95-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.755·7-s − 0.554·13-s − 0.485·17-s + 0.917·19-s − 0.417·23-s + 1/5·25-s + 0.371·29-s − 1.43·31-s + 0.338·35-s + 0.986·37-s − 1.56·41-s + 1.21·43-s − 0.875·47-s − 3/7·49-s − 0.274·53-s + 1.56·59-s + 0.256·61-s − 0.248·65-s + 0.488·67-s + 0.712·71-s − 1.12·79-s + 0.439·83-s − 0.216·85-s + 0.847·89-s − 0.419·91-s + 0.410·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 87120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(87120\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(695.656\)
Root analytic conductor: \(26.3753\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{87120} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 87120,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 8 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.23631424169960, −13.64511722248858, −13.19688706568551, −12.73941340423306, −12.12253652348961, −11.63254390356478, −11.24305275844078, −10.69923954963418, −10.17117923109319, −9.519749185923041, −9.361141383653034, −8.542863842950585, −8.115534552511708, −7.615441934679426, −6.988518546708310, −6.588168453446429, −5.813979687480554, −5.297631008579294, −4.946971278204794, −4.245281560335544, −3.654648721059525, −2.900975529806704, −2.254217545727055, −1.710509582573470, −0.9923098296022502, 0, 0.9923098296022502, 1.710509582573470, 2.254217545727055, 2.900975529806704, 3.654648721059525, 4.245281560335544, 4.946971278204794, 5.297631008579294, 5.813979687480554, 6.588168453446429, 6.988518546708310, 7.615441934679426, 8.115534552511708, 8.542863842950585, 9.361141383653034, 9.519749185923041, 10.17117923109319, 10.69923954963418, 11.24305275844078, 11.63254390356478, 12.12253652348961, 12.73941340423306, 13.19688706568551, 13.64511722248858, 14.23631424169960

Graph of the $Z$-function along the critical line