Properties

Label 2-87120-1.1-c1-0-110
Degree $2$
Conductor $87120$
Sign $-1$
Analytic cond. $695.656$
Root an. cond. $26.3753$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s + 5·17-s + 4·19-s + 23-s + 25-s + 3·31-s + 2·35-s − 2·37-s − 2·41-s + 8·43-s − 9·47-s − 3·49-s + 5·53-s + 4·59-s − 7·61-s − 6·67-s + 8·71-s − 5·79-s − 16·83-s − 5·85-s + 2·89-s − 4·95-s − 2·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s + 1.21·17-s + 0.917·19-s + 0.208·23-s + 1/5·25-s + 0.538·31-s + 0.338·35-s − 0.328·37-s − 0.312·41-s + 1.21·43-s − 1.31·47-s − 3/7·49-s + 0.686·53-s + 0.520·59-s − 0.896·61-s − 0.733·67-s + 0.949·71-s − 0.562·79-s − 1.75·83-s − 0.542·85-s + 0.211·89-s − 0.410·95-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 87120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(87120\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(695.656\)
Root analytic conductor: \(26.3753\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{87120} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 87120,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 5 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 3 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 - 5 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 + 6 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + p T^{2} \)
79 \( 1 + 5 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.15197753954443, −13.65655754015229, −13.15002474171146, −12.54371327765979, −12.29626767421124, −11.63652493724520, −11.34974032041682, −10.60839806635388, −10.06612348022804, −9.770340793835392, −9.177430447989081, −8.658199773824995, −7.956845699259729, −7.662342994680858, −6.994976197854226, −6.595842053384813, −5.838433977242387, −5.474107648374341, −4.783850147211820, −4.181335949815693, −3.414406720292286, −3.177778975806543, −2.498394647146782, −1.494356053268113, −0.8820811488583152, 0, 0.8820811488583152, 1.494356053268113, 2.498394647146782, 3.177778975806543, 3.414406720292286, 4.181335949815693, 4.783850147211820, 5.474107648374341, 5.838433977242387, 6.595842053384813, 6.994976197854226, 7.662342994680858, 7.956845699259729, 8.658199773824995, 9.177430447989081, 9.770340793835392, 10.06612348022804, 10.60839806635388, 11.34974032041682, 11.63652493724520, 12.29626767421124, 12.54371327765979, 13.15002474171146, 13.65655754015229, 14.15197753954443

Graph of the $Z$-function along the critical line