L(s) = 1 | + (0.110 + 0.138i)2-s + (−0.222 − 0.974i)3-s + (0.438 − 1.91i)4-s + (−2.15 − 2.69i)5-s + (0.110 − 0.138i)6-s + (0.844 + 3.70i)7-s + (0.633 − 0.304i)8-s + (−0.900 + 0.433i)9-s + (0.135 − 0.595i)10-s + (3.84 + 1.85i)11-s − 1.96·12-s + (4.18 + 2.01i)13-s + (−0.419 + 0.525i)14-s + (−2.15 + 2.69i)15-s + (−3.43 − 1.65i)16-s − 3.07·17-s + ⋯ |
L(s) = 1 | + (0.0780 + 0.0978i)2-s + (−0.128 − 0.562i)3-s + (0.219 − 0.959i)4-s + (−0.962 − 1.20i)5-s + (0.0450 − 0.0565i)6-s + (0.319 + 1.39i)7-s + (0.223 − 0.107i)8-s + (−0.300 + 0.144i)9-s + (0.0430 − 0.188i)10-s + (1.15 + 0.558i)11-s − 0.568·12-s + (1.16 + 0.558i)13-s + (−0.111 + 0.140i)14-s + (−0.555 + 0.696i)15-s + (−0.858 − 0.413i)16-s − 0.745·17-s + ⋯ |
Λ(s)=(=(87s/2ΓC(s)L(s)(0.474+0.880i)Λ(2−s)
Λ(s)=(=(87s/2ΓC(s+1/2)L(s)(0.474+0.880i)Λ(1−s)
Degree: |
2 |
Conductor: |
87
= 3⋅29
|
Sign: |
0.474+0.880i
|
Analytic conductor: |
0.694698 |
Root analytic conductor: |
0.833485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ87(82,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 87, ( :1/2), 0.474+0.880i)
|
Particular Values
L(1) |
≈ |
0.813378−0.485387i |
L(21) |
≈ |
0.813378−0.485387i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.222+0.974i)T |
| 29 | 1+(1.41−5.19i)T |
good | 2 | 1+(−0.110−0.138i)T+(−0.445+1.94i)T2 |
| 5 | 1+(2.15+2.69i)T+(−1.11+4.87i)T2 |
| 7 | 1+(−0.844−3.70i)T+(−6.30+3.03i)T2 |
| 11 | 1+(−3.84−1.85i)T+(6.85+8.60i)T2 |
| 13 | 1+(−4.18−2.01i)T+(8.10+10.1i)T2 |
| 17 | 1+3.07T+17T2 |
| 19 | 1+(−0.799+3.50i)T+(−17.1−8.24i)T2 |
| 23 | 1+(0.270−0.339i)T+(−5.11−22.4i)T2 |
| 31 | 1+(2.81+3.53i)T+(−6.89+30.2i)T2 |
| 37 | 1+(5.70−2.74i)T+(23.0−28.9i)T2 |
| 41 | 1+1.97T+41T2 |
| 43 | 1+(0.156−0.196i)T+(−9.56−41.9i)T2 |
| 47 | 1+(−4.33−2.08i)T+(29.3+36.7i)T2 |
| 53 | 1+(−6.83−8.57i)T+(−11.7+51.6i)T2 |
| 59 | 1+6.06T+59T2 |
| 61 | 1+(0.843+3.69i)T+(−54.9+26.4i)T2 |
| 67 | 1+(−4.74+2.28i)T+(41.7−52.3i)T2 |
| 71 | 1+(−5.25−2.53i)T+(44.2+55.5i)T2 |
| 73 | 1+(6.57−8.24i)T+(−16.2−71.1i)T2 |
| 79 | 1+(9.04−4.35i)T+(49.2−61.7i)T2 |
| 83 | 1+(−1.57+6.92i)T+(−74.7−36.0i)T2 |
| 89 | 1+(8.71+10.9i)T+(−19.8+86.7i)T2 |
| 97 | 1+(−3.18+13.9i)T+(−87.3−42.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.05837496491112017887779645986, −12.78559436684390851059278183530, −11.80338145237446541604635134830, −11.25771287304732653181834233074, −9.115843622506061739692580368098, −8.704512754058978002650269533933, −6.95744927152153872264786266546, −5.70557473956735926140824629900, −4.48230233580441468873033632859, −1.59293336240047390911440003872,
3.60024090728967690911123052478, 3.91975088207769563914483179072, 6.53872968387328789410731196416, 7.51929970288157838660452618717, 8.587450755224876100517384035861, 10.51994037809613692176538014627, 11.10553710782365320729925803066, 11.86858572639326942896405778249, 13.49423844387374654129049164042, 14.34523316707992453157793477283