L(s) = 1 | + (−0.754 + 0.946i)2-s + (−0.222 + 0.974i)3-s + (0.118 + 0.520i)4-s + (1.12 − 1.40i)5-s + (−0.754 − 0.946i)6-s + (−0.951 + 4.16i)7-s + (−2.76 − 1.33i)8-s + (−0.900 − 0.433i)9-s + (0.484 + 2.12i)10-s + (−0.951 + 0.458i)11-s − 0.534·12-s + (4.75 − 2.29i)13-s + (−3.22 − 4.04i)14-s + (1.12 + 1.40i)15-s + (2.38 − 1.14i)16-s + 5.61·17-s + ⋯ |
L(s) = 1 | + (−0.533 + 0.669i)2-s + (−0.128 + 0.562i)3-s + (0.0594 + 0.260i)4-s + (0.501 − 0.628i)5-s + (−0.308 − 0.386i)6-s + (−0.359 + 1.57i)7-s + (−0.977 − 0.470i)8-s + (−0.300 − 0.144i)9-s + (0.153 + 0.671i)10-s + (−0.286 + 0.138i)11-s − 0.154·12-s + (1.31 − 0.635i)13-s + (−0.862 − 1.08i)14-s + (0.289 + 0.363i)15-s + (0.596 − 0.287i)16-s + 1.36·17-s + ⋯ |
Λ(s)=(=(87s/2ΓC(s)L(s)(−0.243−0.969i)Λ(2−s)
Λ(s)=(=(87s/2ΓC(s+1/2)L(s)(−0.243−0.969i)Λ(1−s)
Degree: |
2 |
Conductor: |
87
= 3⋅29
|
Sign: |
−0.243−0.969i
|
Analytic conductor: |
0.694698 |
Root analytic conductor: |
0.833485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ87(52,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 87, ( :1/2), −0.243−0.969i)
|
Particular Values
L(1) |
≈ |
0.469740+0.602017i |
L(21) |
≈ |
0.469740+0.602017i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.222−0.974i)T |
| 29 | 1+(4.54+2.88i)T |
good | 2 | 1+(0.754−0.946i)T+(−0.445−1.94i)T2 |
| 5 | 1+(−1.12+1.40i)T+(−1.11−4.87i)T2 |
| 7 | 1+(0.951−4.16i)T+(−6.30−3.03i)T2 |
| 11 | 1+(0.951−0.458i)T+(6.85−8.60i)T2 |
| 13 | 1+(−4.75+2.29i)T+(8.10−10.1i)T2 |
| 17 | 1−5.61T+17T2 |
| 19 | 1+(1.42+6.25i)T+(−17.1+8.24i)T2 |
| 23 | 1+(−1.27−1.59i)T+(−5.11+22.4i)T2 |
| 31 | 1+(−2.38+2.99i)T+(−6.89−30.2i)T2 |
| 37 | 1+(−0.315−0.151i)T+(23.0+28.9i)T2 |
| 41 | 1+3.62T+41T2 |
| 43 | 1+(−1.09−1.36i)T+(−9.56+41.9i)T2 |
| 47 | 1+(6.28−3.02i)T+(29.3−36.7i)T2 |
| 53 | 1+(4.87−6.11i)T+(−11.7−51.6i)T2 |
| 59 | 1−0.382T+59T2 |
| 61 | 1+(−1.21+5.32i)T+(−54.9−26.4i)T2 |
| 67 | 1+(7.03+3.38i)T+(41.7+52.3i)T2 |
| 71 | 1+(−14.0+6.77i)T+(44.2−55.5i)T2 |
| 73 | 1+(1.58+1.98i)T+(−16.2+71.1i)T2 |
| 79 | 1+(9.25+4.45i)T+(49.2+61.7i)T2 |
| 83 | 1+(0.338+1.48i)T+(−74.7+36.0i)T2 |
| 89 | 1+(11.1−14.0i)T+(−19.8−86.7i)T2 |
| 97 | 1+(−1.51−6.63i)T+(−87.3+42.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.15152678896365793711870784157, −13.26551628657602676815675150162, −12.45953994059274232264798239126, −11.29993887468933255628308287625, −9.599277752725495073937866476344, −8.987138622015171827050720277254, −8.025347518846611524254159839140, −6.19504583360263124268831505385, −5.36399750697923939943838110292, −3.11329208469633293741539300682,
1.40518222025409769858113908078, 3.45775692869429023077446155565, 5.90358875668298089693931688396, 6.88335105188030357855003100319, 8.332294506402500083140509045419, 9.981543815074833337381663571605, 10.47934467393749412346609923507, 11.42246077178445240105968492306, 12.79094537909157446305172740334, 13.98071191794682076709509223026