L(s) = 1 | + (−1.86 + 0.899i)2-s + (−0.623 − 0.781i)3-s + (1.43 − 1.79i)4-s + (−1.70 + 0.822i)5-s + (1.86 + 0.899i)6-s + (−2.93 − 3.68i)7-s + (−0.137 + 0.604i)8-s + (−0.222 + 0.974i)9-s + (2.45 − 3.07i)10-s + (−0.832 − 3.64i)11-s − 2.29·12-s + (0.250 + 1.09i)13-s + (8.80 + 4.23i)14-s + (1.70 + 0.822i)15-s + (0.737 + 3.22i)16-s − 5.60·17-s + ⋯ |
L(s) = 1 | + (−1.32 + 0.636i)2-s + (−0.359 − 0.451i)3-s + (0.716 − 0.898i)4-s + (−0.763 + 0.367i)5-s + (0.762 + 0.367i)6-s + (−1.11 − 1.39i)7-s + (−0.0487 + 0.213i)8-s + (−0.0741 + 0.324i)9-s + (0.774 − 0.971i)10-s + (−0.250 − 1.09i)11-s − 0.663·12-s + (0.0694 + 0.304i)13-s + (2.35 + 1.13i)14-s + (0.440 + 0.212i)15-s + (0.184 + 0.807i)16-s − 1.35·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.422 + 0.906i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.422 + 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0960117 - 0.150742i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0960117 - 0.150742i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.623 + 0.781i)T \) |
| 29 | \( 1 + (-3.82 + 3.79i)T \) |
good | 2 | \( 1 + (1.86 - 0.899i)T + (1.24 - 1.56i)T^{2} \) |
| 5 | \( 1 + (1.70 - 0.822i)T + (3.11 - 3.90i)T^{2} \) |
| 7 | \( 1 + (2.93 + 3.68i)T + (-1.55 + 6.82i)T^{2} \) |
| 11 | \( 1 + (0.832 + 3.64i)T + (-9.91 + 4.77i)T^{2} \) |
| 13 | \( 1 + (-0.250 - 1.09i)T + (-11.7 + 5.64i)T^{2} \) |
| 17 | \( 1 + 5.60T + 17T^{2} \) |
| 19 | \( 1 + (1.20 - 1.51i)T + (-4.22 - 18.5i)T^{2} \) |
| 23 | \( 1 + (-3.89 - 1.87i)T + (14.3 + 17.9i)T^{2} \) |
| 31 | \( 1 + (0.874 - 0.421i)T + (19.3 - 24.2i)T^{2} \) |
| 37 | \( 1 + (-2.21 + 9.71i)T + (-33.3 - 16.0i)T^{2} \) |
| 41 | \( 1 - 1.59T + 41T^{2} \) |
| 43 | \( 1 + (4.08 + 1.96i)T + (26.8 + 33.6i)T^{2} \) |
| 47 | \( 1 + (1.30 + 5.71i)T + (-42.3 + 20.3i)T^{2} \) |
| 53 | \( 1 + (4.64 - 2.23i)T + (33.0 - 41.4i)T^{2} \) |
| 59 | \( 1 - 5.71T + 59T^{2} \) |
| 61 | \( 1 + (6.51 + 8.16i)T + (-13.5 + 59.4i)T^{2} \) |
| 67 | \( 1 + (-0.883 + 3.86i)T + (-60.3 - 29.0i)T^{2} \) |
| 71 | \( 1 + (-0.0665 - 0.291i)T + (-63.9 + 30.8i)T^{2} \) |
| 73 | \( 1 + (-13.6 - 6.55i)T + (45.5 + 57.0i)T^{2} \) |
| 79 | \( 1 + (-3.07 + 13.4i)T + (-71.1 - 34.2i)T^{2} \) |
| 83 | \( 1 + (-1.81 + 2.28i)T + (-18.4 - 80.9i)T^{2} \) |
| 89 | \( 1 + (6.56 - 3.16i)T + (55.4 - 69.5i)T^{2} \) |
| 97 | \( 1 + (7.99 - 10.0i)T + (-21.5 - 94.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.76510114089098072099725010068, −12.93638418520070515313129313397, −11.19694399901726266972220934252, −10.57431105887403485800104486571, −9.277870869383365607802339168102, −8.010582384727180109768103075881, −7.07236362740617034961699628309, −6.35899788416307813139331277134, −3.77783770503437198700932372242, −0.33663499338349850951616216263,
2.69930477157737553204957959417, 4.84097997171007912815234348814, 6.66394405070562912935527997123, 8.337579529425072061015132709781, 9.151671938806780205743081172052, 9.997920265924044007766611695230, 11.17089615573558642086859872206, 12.12620799498255366611452399804, 12.86705748010902315276593109137, 15.14261221794553540389408834197