L(s) = 1 | + (−1.04 − 0.505i)2-s + (0.623 − 0.781i)3-s + (−0.402 − 0.504i)4-s + (−2.80 − 1.34i)5-s + (−1.04 + 0.505i)6-s + (1.08 − 1.36i)7-s + (0.685 + 3.00i)8-s + (−0.222 − 0.974i)9-s + (2.25 + 2.83i)10-s + (0.616 − 2.70i)11-s − 0.645·12-s + (0.256 − 1.12i)13-s + (−1.83 + 0.881i)14-s + (−2.80 + 1.34i)15-s + (0.510 − 2.23i)16-s + 2.64·17-s + ⋯ |
L(s) = 1 | + (−0.741 − 0.357i)2-s + (0.359 − 0.451i)3-s + (−0.201 − 0.252i)4-s + (−1.25 − 0.603i)5-s + (−0.428 + 0.206i)6-s + (0.411 − 0.516i)7-s + (0.242 + 1.06i)8-s + (−0.0741 − 0.324i)9-s + (0.713 + 0.895i)10-s + (0.185 − 0.814i)11-s − 0.186·12-s + (0.0711 − 0.311i)13-s + (−0.489 + 0.235i)14-s + (−0.723 + 0.348i)15-s + (0.127 − 0.558i)16-s + 0.640·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.431 + 0.902i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.431 + 0.902i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.317951 - 0.504298i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.317951 - 0.504298i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.623 + 0.781i)T \) |
| 29 | \( 1 + (0.497 - 5.36i)T \) |
good | 2 | \( 1 + (1.04 + 0.505i)T + (1.24 + 1.56i)T^{2} \) |
| 5 | \( 1 + (2.80 + 1.34i)T + (3.11 + 3.90i)T^{2} \) |
| 7 | \( 1 + (-1.08 + 1.36i)T + (-1.55 - 6.82i)T^{2} \) |
| 11 | \( 1 + (-0.616 + 2.70i)T + (-9.91 - 4.77i)T^{2} \) |
| 13 | \( 1 + (-0.256 + 1.12i)T + (-11.7 - 5.64i)T^{2} \) |
| 17 | \( 1 - 2.64T + 17T^{2} \) |
| 19 | \( 1 + (-4.50 - 5.64i)T + (-4.22 + 18.5i)T^{2} \) |
| 23 | \( 1 + (-2.53 + 1.21i)T + (14.3 - 17.9i)T^{2} \) |
| 31 | \( 1 + (3.59 + 1.72i)T + (19.3 + 24.2i)T^{2} \) |
| 37 | \( 1 + (2.32 + 10.2i)T + (-33.3 + 16.0i)T^{2} \) |
| 41 | \( 1 - 8.92T + 41T^{2} \) |
| 43 | \( 1 + (10.6 - 5.11i)T + (26.8 - 33.6i)T^{2} \) |
| 47 | \( 1 + (-1.63 + 7.16i)T + (-42.3 - 20.3i)T^{2} \) |
| 53 | \( 1 + (-4.85 - 2.33i)T + (33.0 + 41.4i)T^{2} \) |
| 59 | \( 1 + 8.20T + 59T^{2} \) |
| 61 | \( 1 + (-3.06 + 3.83i)T + (-13.5 - 59.4i)T^{2} \) |
| 67 | \( 1 + (-0.100 - 0.442i)T + (-60.3 + 29.0i)T^{2} \) |
| 71 | \( 1 + (2.58 - 11.3i)T + (-63.9 - 30.8i)T^{2} \) |
| 73 | \( 1 + (-11.5 + 5.57i)T + (45.5 - 57.0i)T^{2} \) |
| 79 | \( 1 + (-3.43 - 15.0i)T + (-71.1 + 34.2i)T^{2} \) |
| 83 | \( 1 + (2.62 + 3.29i)T + (-18.4 + 80.9i)T^{2} \) |
| 89 | \( 1 + (-1.83 - 0.881i)T + (55.4 + 69.5i)T^{2} \) |
| 97 | \( 1 + (-7.89 - 9.90i)T + (-21.5 + 94.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.99071966141046188381665685582, −12.61046406352369509101433855644, −11.57750000922513715609162045384, −10.64711004056893654702777064663, −9.226443399594038151507074584473, −8.216596832340254768817281801951, −7.57600690310369568325346877976, −5.40062738347350594289857587293, −3.70638328448883270835269901696, −1.03469816379415901820362250377,
3.33691846232215542560157743956, 4.68568179060436939562462657441, 7.06024149123853807877717512999, 7.81212171348799932359362160075, 8.892401851231978493002805853138, 9.873144917354784594129402167994, 11.30253711149472091239664469975, 12.16412319801309810542489344732, 13.62629313164745533669374177772, 15.03250383003224433475706340885