L(s) = 1 | + 2-s + 3-s + 4-s + 5-s + 6-s + 4·7-s + 8-s + 9-s + 10-s + 4·11-s + 12-s − 2·13-s + 4·14-s + 15-s + 16-s + 18-s − 4·19-s + 20-s + 4·21-s + 4·22-s + 4·23-s + 24-s + 25-s − 2·26-s + 27-s + 4·28-s − 2·29-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 1.51·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.20·11-s + 0.288·12-s − 0.554·13-s + 1.06·14-s + 0.258·15-s + 1/4·16-s + 0.235·18-s − 0.917·19-s + 0.223·20-s + 0.872·21-s + 0.852·22-s + 0.834·23-s + 0.204·24-s + 1/5·25-s − 0.392·26-s + 0.192·27-s + 0.755·28-s − 0.371·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8670 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8670 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(6.180240145\) |
\(L(\frac12)\) |
\(\approx\) |
\(6.180240145\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 - T \) |
| 17 | \( 1 \) |
good | 7 | \( 1 - 4 T + p T^{2} \) |
| 11 | \( 1 - 4 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 - 4 T + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 - 6 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 + 12 T + p T^{2} \) |
| 47 | \( 1 - 8 T + p T^{2} \) |
| 53 | \( 1 + 2 T + p T^{2} \) |
| 59 | \( 1 - 12 T + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 - 4 T + p T^{2} \) |
| 73 | \( 1 - 14 T + p T^{2} \) |
| 79 | \( 1 - 12 T + p T^{2} \) |
| 83 | \( 1 + 4 T + p T^{2} \) |
| 89 | \( 1 - 10 T + p T^{2} \) |
| 97 | \( 1 + 18 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.81633082909991149541459135500, −6.91274416484870900374413059904, −6.54326484179782817912668702176, −5.44439833129575350164708425386, −4.99320513044357379918266153084, −4.21485684427808117496392917473, −3.66703963793448183397954237991, −2.52804552357457865504035678970, −1.91949952443473790730188554271, −1.17461341555952217886210942030,
1.17461341555952217886210942030, 1.91949952443473790730188554271, 2.52804552357457865504035678970, 3.66703963793448183397954237991, 4.21485684427808117496392917473, 4.99320513044357379918266153084, 5.44439833129575350164708425386, 6.54326484179782817912668702176, 6.91274416484870900374413059904, 7.81633082909991149541459135500