Properties

Label 2-867-1.1-c3-0-93
Degree $2$
Conductor $867$
Sign $1$
Analytic cond. $51.1546$
Root an. cond. $7.15224$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.75·2-s − 3·3-s + 14.6·4-s + 7.65·5-s − 14.2·6-s + 31.5·7-s + 31.6·8-s + 9·9-s + 36.4·10-s + 7.18·11-s − 43.9·12-s + 84.3·13-s + 150.·14-s − 22.9·15-s + 33.5·16-s + 42.8·18-s − 37.0·19-s + 112.·20-s − 94.7·21-s + 34.2·22-s − 150.·23-s − 95.0·24-s − 66.3·25-s + 401.·26-s − 27·27-s + 462.·28-s + 11.5·29-s + ⋯
L(s)  = 1  + 1.68·2-s − 0.577·3-s + 1.83·4-s + 0.684·5-s − 0.971·6-s + 1.70·7-s + 1.40·8-s + 0.333·9-s + 1.15·10-s + 0.197·11-s − 1.05·12-s + 1.79·13-s + 2.87·14-s − 0.395·15-s + 0.524·16-s + 0.560·18-s − 0.447·19-s + 1.25·20-s − 0.984·21-s + 0.331·22-s − 1.36·23-s − 0.808·24-s − 0.531·25-s + 3.02·26-s − 0.192·27-s + 3.12·28-s + 0.0741·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(867\)    =    \(3 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(51.1546\)
Root analytic conductor: \(7.15224\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 867,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(7.005123783\)
\(L(\frac12)\) \(\approx\) \(7.005123783\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
17 \( 1 \)
good2 \( 1 - 4.75T + 8T^{2} \)
5 \( 1 - 7.65T + 125T^{2} \)
7 \( 1 - 31.5T + 343T^{2} \)
11 \( 1 - 7.18T + 1.33e3T^{2} \)
13 \( 1 - 84.3T + 2.19e3T^{2} \)
19 \( 1 + 37.0T + 6.85e3T^{2} \)
23 \( 1 + 150.T + 1.21e4T^{2} \)
29 \( 1 - 11.5T + 2.43e4T^{2} \)
31 \( 1 - 53.2T + 2.97e4T^{2} \)
37 \( 1 - 99.2T + 5.06e4T^{2} \)
41 \( 1 + 118.T + 6.89e4T^{2} \)
43 \( 1 + 456.T + 7.95e4T^{2} \)
47 \( 1 - 571.T + 1.03e5T^{2} \)
53 \( 1 - 462.T + 1.48e5T^{2} \)
59 \( 1 - 48.0T + 2.05e5T^{2} \)
61 \( 1 + 59.5T + 2.26e5T^{2} \)
67 \( 1 + 740.T + 3.00e5T^{2} \)
71 \( 1 - 930.T + 3.57e5T^{2} \)
73 \( 1 - 697.T + 3.89e5T^{2} \)
79 \( 1 + 1.03e3T + 4.93e5T^{2} \)
83 \( 1 + 22.2T + 5.71e5T^{2} \)
89 \( 1 + 369.T + 7.04e5T^{2} \)
97 \( 1 + 1.13e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23154459361392391399740937788, −8.757834698127150919133919677995, −7.924199683062798748459885134766, −6.69131197400088208496711298239, −5.90687690913916100939464342012, −5.43649585456664230822341265214, −4.41718616451593044602332152534, −3.80688703324672742502783334834, −2.18604245318206428992385119928, −1.38852478903124230409662638952, 1.38852478903124230409662638952, 2.18604245318206428992385119928, 3.80688703324672742502783334834, 4.41718616451593044602332152534, 5.43649585456664230822341265214, 5.90687690913916100939464342012, 6.69131197400088208496711298239, 7.924199683062798748459885134766, 8.757834698127150919133919677995, 10.23154459361392391399740937788

Graph of the $Z$-function along the critical line