Properties

Label 2-867-1.1-c3-0-52
Degree $2$
Conductor $867$
Sign $1$
Analytic cond. $51.1546$
Root an. cond. $7.15224$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3·3-s − 7·4-s + 20·5-s + 3·6-s + 2·7-s + 15·8-s + 9·9-s − 20·10-s + 48·11-s + 21·12-s − 14·13-s − 2·14-s − 60·15-s + 41·16-s − 9·18-s + 92·19-s − 140·20-s − 6·21-s − 48·22-s + 122·23-s − 45·24-s + 275·25-s + 14·26-s − 27·27-s − 14·28-s + 36·29-s + ⋯
L(s)  = 1  − 0.353·2-s − 0.577·3-s − 7/8·4-s + 1.78·5-s + 0.204·6-s + 0.107·7-s + 0.662·8-s + 1/3·9-s − 0.632·10-s + 1.31·11-s + 0.505·12-s − 0.298·13-s − 0.0381·14-s − 1.03·15-s + 0.640·16-s − 0.117·18-s + 1.11·19-s − 1.56·20-s − 0.0623·21-s − 0.465·22-s + 1.10·23-s − 0.382·24-s + 11/5·25-s + 0.105·26-s − 0.192·27-s − 0.0944·28-s + 0.230·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(867\)    =    \(3 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(51.1546\)
Root analytic conductor: \(7.15224\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 867,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.956312347\)
\(L(\frac12)\) \(\approx\) \(1.956312347\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p T \)
17 \( 1 \)
good2 \( 1 + T + p^{3} T^{2} \)
5 \( 1 - 4 p T + p^{3} T^{2} \)
7 \( 1 - 2 T + p^{3} T^{2} \)
11 \( 1 - 48 T + p^{3} T^{2} \)
13 \( 1 + 14 T + p^{3} T^{2} \)
19 \( 1 - 92 T + p^{3} T^{2} \)
23 \( 1 - 122 T + p^{3} T^{2} \)
29 \( 1 - 36 T + p^{3} T^{2} \)
31 \( 1 - 182 T + p^{3} T^{2} \)
37 \( 1 + 76 T + p^{3} T^{2} \)
41 \( 1 + 294 T + p^{3} T^{2} \)
43 \( 1 + 428 T + p^{3} T^{2} \)
47 \( 1 + 12 T + p^{3} T^{2} \)
53 \( 1 + 234 T + p^{3} T^{2} \)
59 \( 1 + 540 T + p^{3} T^{2} \)
61 \( 1 - 820 T + p^{3} T^{2} \)
67 \( 1 - 700 T + p^{3} T^{2} \)
71 \( 1 + 794 T + p^{3} T^{2} \)
73 \( 1 - 1038 T + p^{3} T^{2} \)
79 \( 1 + 858 T + p^{3} T^{2} \)
83 \( 1 - 1052 T + p^{3} T^{2} \)
89 \( 1 - 1102 T + p^{3} T^{2} \)
97 \( 1 + 710 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.733315333511607263132046604521, −9.217131978158046630137579897274, −8.356810216087657500687898837456, −6.96506981823629140582068463245, −6.31498195622205121570658352714, −5.25464018597892127253150094746, −4.79699490095752453422319006673, −3.31001550782075612033898086894, −1.69521340929463115826627162072, −0.936073759113514798807751161514, 0.936073759113514798807751161514, 1.69521340929463115826627162072, 3.31001550782075612033898086894, 4.79699490095752453422319006673, 5.25464018597892127253150094746, 6.31498195622205121570658352714, 6.96506981823629140582068463245, 8.356810216087657500687898837456, 9.217131978158046630137579897274, 9.733315333511607263132046604521

Graph of the $Z$-function along the critical line