Properties

Label 2-8664-1.1-c1-0-81
Degree $2$
Conductor $8664$
Sign $1$
Analytic cond. $69.1823$
Root an. cond. $8.31759$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·7-s + 9-s + 2·11-s + 13-s + 4·17-s + 3·21-s − 4·23-s − 5·25-s + 27-s + 7·31-s + 2·33-s − 37-s + 39-s + 4·41-s + 43-s − 2·47-s + 2·49-s + 4·51-s + 12·53-s − 2·59-s − 61-s + 3·63-s + 13·67-s − 4·69-s + 10·71-s − 3·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.13·7-s + 1/3·9-s + 0.603·11-s + 0.277·13-s + 0.970·17-s + 0.654·21-s − 0.834·23-s − 25-s + 0.192·27-s + 1.25·31-s + 0.348·33-s − 0.164·37-s + 0.160·39-s + 0.624·41-s + 0.152·43-s − 0.291·47-s + 2/7·49-s + 0.560·51-s + 1.64·53-s − 0.260·59-s − 0.128·61-s + 0.377·63-s + 1.58·67-s − 0.481·69-s + 1.18·71-s − 0.351·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8664\)    =    \(2^{3} \cdot 3 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(69.1823\)
Root analytic conductor: \(8.31759\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8664,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.493116232\)
\(L(\frac12)\) \(\approx\) \(3.493116232\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
19 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 3 T + p T^{2} \) 1.73.d
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.902267088556976333967452082296, −7.28424619249593199832951762759, −6.38002033203819681313592240946, −5.70647241645473426488394705692, −4.92088678133944556923239813316, −4.13076848286805938191727211639, −3.61095120770752977395398445272, −2.54765611264509120880499664182, −1.76323454857306749702407743571, −0.948354041979722767786019274465, 0.948354041979722767786019274465, 1.76323454857306749702407743571, 2.54765611264509120880499664182, 3.61095120770752977395398445272, 4.13076848286805938191727211639, 4.92088678133944556923239813316, 5.70647241645473426488394705692, 6.38002033203819681313592240946, 7.28424619249593199832951762759, 7.902267088556976333967452082296

Graph of the $Z$-function along the critical line