Properties

Label 2-8664-1.1-c1-0-71
Degree $2$
Conductor $8664$
Sign $-1$
Analytic cond. $69.1823$
Root an. cond. $8.31759$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s − 4·7-s + 9-s + 2·11-s + 2·15-s − 2·17-s + 4·21-s + 6·23-s − 25-s − 27-s − 6·29-s + 4·31-s − 2·33-s + 8·35-s − 4·37-s + 2·41-s − 4·43-s − 2·45-s + 6·47-s + 9·49-s + 2·51-s + 2·53-s − 4·55-s − 12·59-s + 10·61-s − 4·63-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s − 1.51·7-s + 1/3·9-s + 0.603·11-s + 0.516·15-s − 0.485·17-s + 0.872·21-s + 1.25·23-s − 1/5·25-s − 0.192·27-s − 1.11·29-s + 0.718·31-s − 0.348·33-s + 1.35·35-s − 0.657·37-s + 0.312·41-s − 0.609·43-s − 0.298·45-s + 0.875·47-s + 9/7·49-s + 0.280·51-s + 0.274·53-s − 0.539·55-s − 1.56·59-s + 1.28·61-s − 0.503·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8664\)    =    \(2^{3} \cdot 3 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(69.1823\)
Root analytic conductor: \(8.31759\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8664,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
19 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 16 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 10 T + p T^{2} \)
89 \( 1 - 18 T + p T^{2} \)
97 \( 1 - 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.23045624483626796910538418393, −6.73504546613104419926843193212, −6.21402985368867299233181028685, −5.39570772751831333013763229821, −4.56409469882140149615399851948, −3.73872276927802553442634695645, −3.35817405055530012819687671302, −2.26882882735717096087619727984, −0.906053614823590096176464034696, 0, 0.906053614823590096176464034696, 2.26882882735717096087619727984, 3.35817405055530012819687671302, 3.73872276927802553442634695645, 4.56409469882140149615399851948, 5.39570772751831333013763229821, 6.21402985368867299233181028685, 6.73504546613104419926843193212, 7.23045624483626796910538418393

Graph of the $Z$-function along the critical line