Properties

Label 2-8664-1.1-c1-0-62
Degree $2$
Conductor $8664$
Sign $-1$
Analytic cond. $69.1823$
Root an. cond. $8.31759$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s − 3·7-s + 9-s − 11-s + 2·13-s + 3·15-s − 5·17-s + 3·21-s − 4·23-s + 4·25-s − 27-s + 6·29-s + 2·31-s + 33-s + 9·35-s − 8·37-s − 2·39-s + 8·41-s + 13·43-s − 3·45-s + 13·47-s + 2·49-s + 5·51-s + 6·53-s + 3·55-s − 4·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s − 1.13·7-s + 1/3·9-s − 0.301·11-s + 0.554·13-s + 0.774·15-s − 1.21·17-s + 0.654·21-s − 0.834·23-s + 4/5·25-s − 0.192·27-s + 1.11·29-s + 0.359·31-s + 0.174·33-s + 1.52·35-s − 1.31·37-s − 0.320·39-s + 1.24·41-s + 1.98·43-s − 0.447·45-s + 1.89·47-s + 2/7·49-s + 0.700·51-s + 0.824·53-s + 0.404·55-s − 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8664\)    =    \(2^{3} \cdot 3 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(69.1823\)
Root analytic conductor: \(8.31759\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8664,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
19 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 + T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 5 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 - 13 T + p T^{2} \)
47 \( 1 - 13 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 13 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 3 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.48722452079366411338580209149, −6.61817243450412613583037515362, −6.23594922502770403826571343940, −5.41339600489132443742989782718, −4.29415537117189900002627510921, −4.11309802622817372680738239516, −3.17926980688467316862081276218, −2.34548339342499975775604881106, −0.835191651314275551479017177030, 0, 0.835191651314275551479017177030, 2.34548339342499975775604881106, 3.17926980688467316862081276218, 4.11309802622817372680738239516, 4.29415537117189900002627510921, 5.41339600489132443742989782718, 6.23594922502770403826571343940, 6.61817243450412613583037515362, 7.48722452079366411338580209149

Graph of the $Z$-function along the critical line