L(s) = 1 | + 3-s − 2·5-s − 5·7-s + 9-s − 4·11-s − 5·13-s − 2·15-s − 5·21-s − 6·23-s − 25-s + 27-s − 8·29-s + 31-s − 4·33-s + 10·35-s − 7·37-s − 5·39-s − 11·43-s − 2·45-s + 10·47-s + 18·49-s − 6·53-s + 8·55-s − 8·59-s − 61-s − 5·63-s + 10·65-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.894·5-s − 1.88·7-s + 1/3·9-s − 1.20·11-s − 1.38·13-s − 0.516·15-s − 1.09·21-s − 1.25·23-s − 1/5·25-s + 0.192·27-s − 1.48·29-s + 0.179·31-s − 0.696·33-s + 1.69·35-s − 1.15·37-s − 0.800·39-s − 1.67·43-s − 0.298·45-s + 1.45·47-s + 18/7·49-s − 0.824·53-s + 1.07·55-s − 1.04·59-s − 0.128·61-s − 0.629·63-s + 1.24·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 19 | \( 1 \) |
good | 5 | \( 1 + 2 T + p T^{2} \) |
| 7 | \( 1 + 5 T + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + 5 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 23 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 + 8 T + p T^{2} \) |
| 31 | \( 1 - T + p T^{2} \) |
| 37 | \( 1 + 7 T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 + 11 T + p T^{2} \) |
| 47 | \( 1 - 10 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + 8 T + p T^{2} \) |
| 61 | \( 1 + T + p T^{2} \) |
| 67 | \( 1 + 5 T + p T^{2} \) |
| 71 | \( 1 + 6 T + p T^{2} \) |
| 73 | \( 1 - T + p T^{2} \) |
| 79 | \( 1 - 13 T + p T^{2} \) |
| 83 | \( 1 + 4 T + p T^{2} \) |
| 89 | \( 1 - 12 T + p T^{2} \) |
| 97 | \( 1 + 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.33869438743301300406859435816, −6.52191544606770970357436859699, −5.73445014165525802841585152884, −4.94373805834911063585061854116, −3.99280860593233180838870043353, −3.44196122614469365488044467428, −2.78561902359244845453670190594, −2.03984449878263612023368049843, 0, 0,
2.03984449878263612023368049843, 2.78561902359244845453670190594, 3.44196122614469365488044467428, 3.99280860593233180838870043353, 4.94373805834911063585061854116, 5.73445014165525802841585152884, 6.52191544606770970357436859699, 7.33869438743301300406859435816