Properties

Label 2-8664-1.1-c1-0-169
Degree $2$
Conductor $8664$
Sign $-1$
Analytic cond. $69.1823$
Root an. cond. $8.31759$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·5-s + 7-s + 9-s − 3·11-s + 3·15-s − 7·17-s + 21-s − 4·23-s + 4·25-s + 27-s − 4·29-s − 4·31-s − 3·33-s + 3·35-s + 4·37-s − 12·41-s + 43-s + 3·45-s − 9·47-s − 6·49-s − 7·51-s − 12·53-s − 9·55-s − 8·59-s − 5·61-s + 63-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.34·5-s + 0.377·7-s + 1/3·9-s − 0.904·11-s + 0.774·15-s − 1.69·17-s + 0.218·21-s − 0.834·23-s + 4/5·25-s + 0.192·27-s − 0.742·29-s − 0.718·31-s − 0.522·33-s + 0.507·35-s + 0.657·37-s − 1.87·41-s + 0.152·43-s + 0.447·45-s − 1.31·47-s − 6/7·49-s − 0.980·51-s − 1.64·53-s − 1.21·55-s − 1.04·59-s − 0.640·61-s + 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8664\)    =    \(2^{3} \cdot 3 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(69.1823\)
Root analytic conductor: \(8.31759\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8664,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
19 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 7 T + p T^{2} \) 1.17.h
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59698636069540757484949403922, −6.48420023253247087955657068999, −6.29115188930501012140901417658, −5.15022714585569524482302464698, −4.87128994588008274336549820951, −3.79884039990866780165028982928, −2.89320691013502015523993091285, −1.99340799726519623573848293305, −1.77557215543104849151652825273, 0, 1.77557215543104849151652825273, 1.99340799726519623573848293305, 2.89320691013502015523993091285, 3.79884039990866780165028982928, 4.87128994588008274336549820951, 5.15022714585569524482302464698, 6.29115188930501012140901417658, 6.48420023253247087955657068999, 7.59698636069540757484949403922

Graph of the $Z$-function along the critical line