Properties

Label 2-8664-1.1-c1-0-144
Degree $2$
Conductor $8664$
Sign $-1$
Analytic cond. $69.1823$
Root an. cond. $8.31759$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·7-s + 9-s + 2·11-s − 13-s + 4·17-s − 3·21-s − 4·23-s − 5·25-s − 27-s − 7·31-s − 2·33-s + 37-s + 39-s − 4·41-s + 43-s − 2·47-s + 2·49-s − 4·51-s − 12·53-s + 2·59-s − 61-s + 3·63-s − 13·67-s + 4·69-s − 10·71-s − 3·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.13·7-s + 1/3·9-s + 0.603·11-s − 0.277·13-s + 0.970·17-s − 0.654·21-s − 0.834·23-s − 25-s − 0.192·27-s − 1.25·31-s − 0.348·33-s + 0.164·37-s + 0.160·39-s − 0.624·41-s + 0.152·43-s − 0.291·47-s + 2/7·49-s − 0.560·51-s − 1.64·53-s + 0.260·59-s − 0.128·61-s + 0.377·63-s − 1.58·67-s + 0.481·69-s − 1.18·71-s − 0.351·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8664\)    =    \(2^{3} \cdot 3 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(69.1823\)
Root analytic conductor: \(8.31759\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8664,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
19 \( 1 \)
good5 \( 1 + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 7 T + p T^{2} \)
37 \( 1 - T + p T^{2} \)
41 \( 1 + 4 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 - 2 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 + 13 T + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 + 3 T + p T^{2} \)
79 \( 1 - 13 T + p T^{2} \)
83 \( 1 + 8 T + p T^{2} \)
89 \( 1 + 18 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.55344538604637258816744025192, −6.73502980094343579195042138089, −5.88088491098401297690165620228, −5.45673530229714629950464513063, −4.62674360523230339830749344975, −4.04433119163911442361126350256, −3.15542834922238433851016990421, −1.88096236037880357225419052848, −1.39083433986808492707659380632, 0, 1.39083433986808492707659380632, 1.88096236037880357225419052848, 3.15542834922238433851016990421, 4.04433119163911442361126350256, 4.62674360523230339830749344975, 5.45673530229714629950464513063, 5.88088491098401297690165620228, 6.73502980094343579195042138089, 7.55344538604637258816744025192

Graph of the $Z$-function along the critical line