Properties

Label 2-8664-1.1-c1-0-133
Degree $2$
Conductor $8664$
Sign $-1$
Analytic cond. $69.1823$
Root an. cond. $8.31759$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 3·7-s + 9-s − 5·11-s + 2·13-s + 15-s − 17-s − 3·21-s + 4·23-s − 4·25-s + 27-s + 6·29-s + 10·31-s − 5·33-s − 3·35-s + 2·39-s − 11·43-s + 45-s + 9·47-s + 2·49-s − 51-s − 10·53-s − 5·55-s − 4·59-s − 5·61-s − 3·63-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 1.13·7-s + 1/3·9-s − 1.50·11-s + 0.554·13-s + 0.258·15-s − 0.242·17-s − 0.654·21-s + 0.834·23-s − 4/5·25-s + 0.192·27-s + 1.11·29-s + 1.79·31-s − 0.870·33-s − 0.507·35-s + 0.320·39-s − 1.67·43-s + 0.149·45-s + 1.31·47-s + 2/7·49-s − 0.140·51-s − 1.37·53-s − 0.674·55-s − 0.520·59-s − 0.640·61-s − 0.377·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8664\)    =    \(2^{3} \cdot 3 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(69.1823\)
Root analytic conductor: \(8.31759\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8664,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
19 \( 1 \)
good5 \( 1 - T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 10 T + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 11 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 5 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 13 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.52929504602544076212964591862, −6.54950735559971097638120298282, −6.29498979993205651441443446902, −5.31148830720859028803317313316, −4.67366340793368282480614264044, −3.68630125014275917615738399096, −2.86892538601494062464459118573, −2.54535064237070398541758364263, −1.29658677535275691280425845185, 0, 1.29658677535275691280425845185, 2.54535064237070398541758364263, 2.86892538601494062464459118573, 3.68630125014275917615738399096, 4.67366340793368282480614264044, 5.31148830720859028803317313316, 6.29498979993205651441443446902, 6.54950735559971097638120298282, 7.52929504602544076212964591862

Graph of the $Z$-function along the critical line