L(s) = 1 | − 3-s + 2·5-s − 3·7-s + 9-s − 5·13-s − 2·15-s − 4·17-s + 3·21-s + 6·23-s − 25-s − 27-s + 4·29-s + 7·31-s − 6·35-s + 37-s + 5·39-s + 11·43-s + 2·45-s + 6·47-s + 2·49-s + 4·51-s + 2·53-s − 8·59-s + 7·61-s − 3·63-s − 10·65-s − 3·67-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.894·5-s − 1.13·7-s + 1/3·9-s − 1.38·13-s − 0.516·15-s − 0.970·17-s + 0.654·21-s + 1.25·23-s − 1/5·25-s − 0.192·27-s + 0.742·29-s + 1.25·31-s − 1.01·35-s + 0.164·37-s + 0.800·39-s + 1.67·43-s + 0.298·45-s + 0.875·47-s + 2/7·49-s + 0.560·51-s + 0.274·53-s − 1.04·59-s + 0.896·61-s − 0.377·63-s − 1.24·65-s − 0.366·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 19 | \( 1 \) |
good | 5 | \( 1 - 2 T + p T^{2} \) |
| 7 | \( 1 + 3 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 5 T + p T^{2} \) |
| 17 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 - 6 T + p T^{2} \) |
| 29 | \( 1 - 4 T + p T^{2} \) |
| 31 | \( 1 - 7 T + p T^{2} \) |
| 37 | \( 1 - T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 - 11 T + p T^{2} \) |
| 47 | \( 1 - 6 T + p T^{2} \) |
| 53 | \( 1 - 2 T + p T^{2} \) |
| 59 | \( 1 + 8 T + p T^{2} \) |
| 61 | \( 1 - 7 T + p T^{2} \) |
| 67 | \( 1 + 3 T + p T^{2} \) |
| 71 | \( 1 + 6 T + p T^{2} \) |
| 73 | \( 1 - 9 T + p T^{2} \) |
| 79 | \( 1 + 5 T + p T^{2} \) |
| 83 | \( 1 - 16 T + p T^{2} \) |
| 89 | \( 1 + 12 T + p T^{2} \) |
| 97 | \( 1 - 14 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.16475400168599729859178273941, −6.64457505140925462471515560353, −6.15707594098948202247406505560, −5.39200636166071464565890099363, −4.75318898014360509116007536421, −3.99723466585415185092130071867, −2.73417924180991588230118245941, −2.46363925477290579993003333583, −1.11195515241029862606579829262, 0,
1.11195515241029862606579829262, 2.46363925477290579993003333583, 2.73417924180991588230118245941, 3.99723466585415185092130071867, 4.75318898014360509116007536421, 5.39200636166071464565890099363, 6.15707594098948202247406505560, 6.64457505140925462471515560353, 7.16475400168599729859178273941