Properties

Label 2-8640-1.1-c1-0-9
Degree $2$
Conductor $8640$
Sign $1$
Analytic cond. $68.9907$
Root an. cond. $8.30606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4·7-s − 6·11-s + 4·13-s − 3·17-s + 7·19-s − 9·23-s + 25-s − 7·31-s − 4·35-s − 2·37-s + 6·41-s − 2·43-s + 9·49-s − 9·53-s − 6·55-s + 12·59-s + 7·61-s + 4·65-s − 2·67-s + 6·71-s + 2·73-s + 24·77-s − 79-s − 9·83-s − 3·85-s − 6·89-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.51·7-s − 1.80·11-s + 1.10·13-s − 0.727·17-s + 1.60·19-s − 1.87·23-s + 1/5·25-s − 1.25·31-s − 0.676·35-s − 0.328·37-s + 0.937·41-s − 0.304·43-s + 9/7·49-s − 1.23·53-s − 0.809·55-s + 1.56·59-s + 0.896·61-s + 0.496·65-s − 0.244·67-s + 0.712·71-s + 0.234·73-s + 2.73·77-s − 0.112·79-s − 0.987·83-s − 0.325·85-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8640\)    =    \(2^{6} \cdot 3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(68.9907\)
Root analytic conductor: \(8.30606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8640,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.062520269\)
\(L(\frac12)\) \(\approx\) \(1.062520269\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75445560307162518433276120482, −7.05385618921565081755289977771, −6.31428142780564962629578498673, −5.68977345778808165179879459440, −5.28799647162051247248572387731, −4.08851044485322199201440937509, −3.38504060558484704716719946533, −2.72890820492153798397328653865, −1.88198462804690228011401538227, −0.47605480509136641046831994616, 0.47605480509136641046831994616, 1.88198462804690228011401538227, 2.72890820492153798397328653865, 3.38504060558484704716719946533, 4.08851044485322199201440937509, 5.28799647162051247248572387731, 5.68977345778808165179879459440, 6.31428142780564962629578498673, 7.05385618921565081755289977771, 7.75445560307162518433276120482

Graph of the $Z$-function along the critical line