Properties

Label 2-8640-1.1-c1-0-65
Degree $2$
Conductor $8640$
Sign $1$
Analytic cond. $68.9907$
Root an. cond. $8.30606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s + 3·11-s + 5·13-s + 3·17-s + 7·23-s + 25-s − 5·29-s − 5·31-s + 2·35-s + 6·37-s + 9·43-s + 9·47-s − 3·49-s + 8·53-s + 3·55-s − 4·59-s − 14·61-s + 5·65-s + 12·67-s − 8·71-s − 2·73-s + 6·77-s − 11·79-s + 6·83-s + 3·85-s + 10·91-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.755·7-s + 0.904·11-s + 1.38·13-s + 0.727·17-s + 1.45·23-s + 1/5·25-s − 0.928·29-s − 0.898·31-s + 0.338·35-s + 0.986·37-s + 1.37·43-s + 1.31·47-s − 3/7·49-s + 1.09·53-s + 0.404·55-s − 0.520·59-s − 1.79·61-s + 0.620·65-s + 1.46·67-s − 0.949·71-s − 0.234·73-s + 0.683·77-s − 1.23·79-s + 0.658·83-s + 0.325·85-s + 1.04·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8640\)    =    \(2^{6} \cdot 3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(68.9907\)
Root analytic conductor: \(8.30606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8640,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.333463841\)
\(L(\frac12)\) \(\approx\) \(3.333463841\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.66140808153721591025214706319, −7.19974071948624865643231230692, −6.23821848458239971739185088390, −5.79179688832438790459366172329, −5.07128659575528921484081003283, −4.16617067668056656069671336060, −3.58389131704070409692076730155, −2.62148986519053440586599240678, −1.52379602117965217849632647733, −1.03014242269710431224333446559, 1.03014242269710431224333446559, 1.52379602117965217849632647733, 2.62148986519053440586599240678, 3.58389131704070409692076730155, 4.16617067668056656069671336060, 5.07128659575528921484081003283, 5.79179688832438790459366172329, 6.23821848458239971739185088390, 7.19974071948624865643231230692, 7.66140808153721591025214706319

Graph of the $Z$-function along the critical line