| L(s) = 1 | − 5-s + 2·7-s + 6·13-s − 7·17-s + 7·19-s + 7·23-s + 25-s + 6·29-s − 3·31-s − 2·35-s + 6·37-s − 4·41-s + 8·43-s − 4·47-s − 3·49-s − 5·53-s − 6·59-s + 3·61-s − 6·65-s − 10·67-s + 12·71-s + 16·73-s − 79-s − 9·83-s + 7·85-s + 4·89-s + 12·91-s + ⋯ |
| L(s) = 1 | − 0.447·5-s + 0.755·7-s + 1.66·13-s − 1.69·17-s + 1.60·19-s + 1.45·23-s + 1/5·25-s + 1.11·29-s − 0.538·31-s − 0.338·35-s + 0.986·37-s − 0.624·41-s + 1.21·43-s − 0.583·47-s − 3/7·49-s − 0.686·53-s − 0.781·59-s + 0.384·61-s − 0.744·65-s − 1.22·67-s + 1.42·71-s + 1.87·73-s − 0.112·79-s − 0.987·83-s + 0.759·85-s + 0.423·89-s + 1.25·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.449123546\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.449123546\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 2 | \( 1 \) | |
| 3 | \( 1 \) | |
| 5 | \( 1 + T \) | |
| good | 7 | \( 1 - 2 T + p T^{2} \) | 1.7.ac |
| 11 | \( 1 + p T^{2} \) | 1.11.a |
| 13 | \( 1 - 6 T + p T^{2} \) | 1.13.ag |
| 17 | \( 1 + 7 T + p T^{2} \) | 1.17.h |
| 19 | \( 1 - 7 T + p T^{2} \) | 1.19.ah |
| 23 | \( 1 - 7 T + p T^{2} \) | 1.23.ah |
| 29 | \( 1 - 6 T + p T^{2} \) | 1.29.ag |
| 31 | \( 1 + 3 T + p T^{2} \) | 1.31.d |
| 37 | \( 1 - 6 T + p T^{2} \) | 1.37.ag |
| 41 | \( 1 + 4 T + p T^{2} \) | 1.41.e |
| 43 | \( 1 - 8 T + p T^{2} \) | 1.43.ai |
| 47 | \( 1 + 4 T + p T^{2} \) | 1.47.e |
| 53 | \( 1 + 5 T + p T^{2} \) | 1.53.f |
| 59 | \( 1 + 6 T + p T^{2} \) | 1.59.g |
| 61 | \( 1 - 3 T + p T^{2} \) | 1.61.ad |
| 67 | \( 1 + 10 T + p T^{2} \) | 1.67.k |
| 71 | \( 1 - 12 T + p T^{2} \) | 1.71.am |
| 73 | \( 1 - 16 T + p T^{2} \) | 1.73.aq |
| 79 | \( 1 + T + p T^{2} \) | 1.79.b |
| 83 | \( 1 + 9 T + p T^{2} \) | 1.83.j |
| 89 | \( 1 - 4 T + p T^{2} \) | 1.89.ae |
| 97 | \( 1 + 16 T + p T^{2} \) | 1.97.q |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.948159841851286699830517077560, −7.00118078985232594964150176812, −6.54510093382276251898066188778, −5.66130497307776090659460923538, −4.88884599739034487113059304231, −4.33399863009673093977077437437, −3.46941738507734754482744800661, −2.75773295591499008724415959899, −1.57783525989621277401338385227, −0.828444635765924489336660378175,
0.828444635765924489336660378175, 1.57783525989621277401338385227, 2.75773295591499008724415959899, 3.46941738507734754482744800661, 4.33399863009673093977077437437, 4.88884599739034487113059304231, 5.66130497307776090659460923538, 6.54510093382276251898066188778, 7.00118078985232594964150176812, 7.948159841851286699830517077560