Properties

Label 2-8640-1.1-c1-0-28
Degree $2$
Conductor $8640$
Sign $1$
Analytic cond. $68.9907$
Root an. cond. $8.30606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s + 4·11-s + 2·13-s + 5·17-s − 5·19-s − 23-s + 25-s + 2·29-s − 7·31-s + 2·35-s + 6·37-s + 4·43-s − 4·47-s − 3·49-s − 9·53-s − 4·55-s + 14·59-s + 11·61-s − 2·65-s + 14·67-s − 12·73-s − 8·77-s + 3·79-s − 83-s − 5·85-s − 4·91-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s + 1.20·11-s + 0.554·13-s + 1.21·17-s − 1.14·19-s − 0.208·23-s + 1/5·25-s + 0.371·29-s − 1.25·31-s + 0.338·35-s + 0.986·37-s + 0.609·43-s − 0.583·47-s − 3/7·49-s − 1.23·53-s − 0.539·55-s + 1.82·59-s + 1.40·61-s − 0.248·65-s + 1.71·67-s − 1.40·73-s − 0.911·77-s + 0.337·79-s − 0.109·83-s − 0.542·85-s − 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8640\)    =    \(2^{6} \cdot 3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(68.9907\)
Root analytic conductor: \(8.30606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8640,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.740398077\)
\(L(\frac12)\) \(\approx\) \(1.740398077\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80682575825068988107180784860, −6.97582489844166987098471330845, −6.42323440035188465542207462285, −5.87926903845192686452558018879, −4.97725659093239021802777561752, −3.86804861284948376825381462383, −3.77852652903357473425653255282, −2.76179113918930563985009936390, −1.65614461383301376595013047379, −0.66140698487738723827485617052, 0.66140698487738723827485617052, 1.65614461383301376595013047379, 2.76179113918930563985009936390, 3.77852652903357473425653255282, 3.86804861284948376825381462383, 4.97725659093239021802777561752, 5.87926903845192686452558018879, 6.42323440035188465542207462285, 6.97582489844166987098471330845, 7.80682575825068988107180784860

Graph of the $Z$-function along the critical line