Properties

Label 2-864-216.59-c1-0-31
Degree $2$
Conductor $864$
Sign $0.116 + 0.993i$
Analytic cond. $6.89907$
Root an. cond. $2.62660$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.03 − 1.38i)3-s + (1.93 − 0.705i)5-s + (0.744 − 0.131i)7-s + (−0.856 − 2.87i)9-s + (0.949 − 2.60i)11-s + (0.421 − 0.502i)13-s + (1.02 − 3.41i)15-s + (−3.79 − 2.18i)17-s + (−0.155 − 0.270i)19-s + (0.588 − 1.16i)21-s + (−1.32 + 7.53i)23-s + (−0.575 + 0.482i)25-s + (−4.87 − 1.78i)27-s + (5.89 − 4.94i)29-s + (4.16 + 0.733i)31-s + ⋯
L(s)  = 1  + (0.597 − 0.801i)3-s + (0.866 − 0.315i)5-s + (0.281 − 0.0496i)7-s + (−0.285 − 0.958i)9-s + (0.286 − 0.786i)11-s + (0.116 − 0.139i)13-s + (0.265 − 0.882i)15-s + (−0.919 − 0.531i)17-s + (−0.0357 − 0.0619i)19-s + (0.128 − 0.255i)21-s + (−0.276 + 1.57i)23-s + (−0.115 + 0.0964i)25-s + (−0.938 − 0.344i)27-s + (1.09 − 0.918i)29-s + (0.747 + 0.131i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.116 + 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.116 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(864\)    =    \(2^{5} \cdot 3^{3}\)
Sign: $0.116 + 0.993i$
Analytic conductor: \(6.89907\)
Root analytic conductor: \(2.62660\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{864} (815, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 864,\ (\ :1/2),\ 0.116 + 0.993i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.64906 - 1.46659i\)
\(L(\frac12)\) \(\approx\) \(1.64906 - 1.46659i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.03 + 1.38i)T \)
good5 \( 1 + (-1.93 + 0.705i)T + (3.83 - 3.21i)T^{2} \)
7 \( 1 + (-0.744 + 0.131i)T + (6.57 - 2.39i)T^{2} \)
11 \( 1 + (-0.949 + 2.60i)T + (-8.42 - 7.07i)T^{2} \)
13 \( 1 + (-0.421 + 0.502i)T + (-2.25 - 12.8i)T^{2} \)
17 \( 1 + (3.79 + 2.18i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (0.155 + 0.270i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (1.32 - 7.53i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (-5.89 + 4.94i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (-4.16 - 0.733i)T + (29.1 + 10.6i)T^{2} \)
37 \( 1 + (-2.70 - 1.56i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + (-4.31 + 5.14i)T + (-7.11 - 40.3i)T^{2} \)
43 \( 1 + (-3.00 - 1.09i)T + (32.9 + 27.6i)T^{2} \)
47 \( 1 + (-1.89 - 10.7i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 + 0.876T + 53T^{2} \)
59 \( 1 + (2.94 + 8.09i)T + (-45.1 + 37.9i)T^{2} \)
61 \( 1 + (12.1 - 2.14i)T + (57.3 - 20.8i)T^{2} \)
67 \( 1 + (3.32 + 2.79i)T + (11.6 + 65.9i)T^{2} \)
71 \( 1 + (-7.08 + 12.2i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-7.17 - 12.4i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (7.09 + 8.44i)T + (-13.7 + 77.7i)T^{2} \)
83 \( 1 + (-7.10 - 8.47i)T + (-14.4 + 81.7i)T^{2} \)
89 \( 1 + (-5.55 + 3.20i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (-1.59 - 0.579i)T + (74.3 + 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.569237690885581163289615436320, −9.232972625104214030194479585863, −8.232074899434281281603214326572, −7.56314439385086830542028168159, −6.37813240987995313678408503676, −5.88342817125886279193915312669, −4.60296949169478677062483224929, −3.27589446794209725117333494731, −2.19878733772643247844807833641, −1.06527621041691641599017681097, 1.93245401195563654905393976748, 2.75770479556219232430300350172, 4.19357228748717677284972858901, 4.79034992230689340620659434221, 6.05144638910827301907791992333, 6.82220879991566001318630731854, 8.074331553622457466038729672985, 8.781279777226522645407602434935, 9.563878758180801314239220039394, 10.34388486532983068873492017034

Graph of the $Z$-function along the critical line