Properties

Label 2-864-216.157-c1-0-4
Degree $2$
Conductor $864$
Sign $0.782 - 0.622i$
Analytic cond. $6.89907$
Root an. cond. $2.62660$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.40 − 1.01i)3-s + (−1.34 − 3.68i)5-s + (0.499 + 2.83i)7-s + (0.956 + 2.84i)9-s + (−0.996 + 2.73i)11-s + (−2.55 + 3.04i)13-s + (−1.84 + 6.54i)15-s + (2.48 − 4.30i)17-s + (−1.78 + 1.02i)19-s + (2.16 − 4.49i)21-s + (−0.165 + 0.936i)23-s + (−7.96 + 6.68i)25-s + (1.52 − 4.96i)27-s + (5.18 + 6.17i)29-s + (−0.331 + 1.88i)31-s + ⋯
L(s)  = 1  + (−0.812 − 0.583i)3-s + (−0.600 − 1.64i)5-s + (0.188 + 1.07i)7-s + (0.318 + 0.947i)9-s + (−0.300 + 0.825i)11-s + (−0.709 + 0.845i)13-s + (−0.475 + 1.68i)15-s + (0.603 − 1.04i)17-s + (−0.408 + 0.235i)19-s + (0.472 − 0.980i)21-s + (−0.0344 + 0.195i)23-s + (−1.59 + 1.33i)25-s + (0.294 − 0.955i)27-s + (0.962 + 1.14i)29-s + (−0.0595 + 0.337i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.782 - 0.622i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.782 - 0.622i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(864\)    =    \(2^{5} \cdot 3^{3}\)
Sign: $0.782 - 0.622i$
Analytic conductor: \(6.89907\)
Root analytic conductor: \(2.62660\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{864} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 864,\ (\ :1/2),\ 0.782 - 0.622i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.697710 + 0.243721i\)
\(L(\frac12)\) \(\approx\) \(0.697710 + 0.243721i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.40 + 1.01i)T \)
good5 \( 1 + (1.34 + 3.68i)T + (-3.83 + 3.21i)T^{2} \)
7 \( 1 + (-0.499 - 2.83i)T + (-6.57 + 2.39i)T^{2} \)
11 \( 1 + (0.996 - 2.73i)T + (-8.42 - 7.07i)T^{2} \)
13 \( 1 + (2.55 - 3.04i)T + (-2.25 - 12.8i)T^{2} \)
17 \( 1 + (-2.48 + 4.30i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (1.78 - 1.02i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.165 - 0.936i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (-5.18 - 6.17i)T + (-5.03 + 28.5i)T^{2} \)
31 \( 1 + (0.331 - 1.88i)T + (-29.1 - 10.6i)T^{2} \)
37 \( 1 + (-8.31 - 4.79i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + (-0.581 - 0.487i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (-2.14 + 5.88i)T + (-32.9 - 27.6i)T^{2} \)
47 \( 1 + (0.932 + 5.28i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 - 3.54iT - 53T^{2} \)
59 \( 1 + (-2.13 - 5.86i)T + (-45.1 + 37.9i)T^{2} \)
61 \( 1 + (3.22 - 0.568i)T + (57.3 - 20.8i)T^{2} \)
67 \( 1 + (4.40 - 5.25i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (3.83 - 6.64i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-3.46 - 6.00i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (0.205 - 0.172i)T + (13.7 - 77.7i)T^{2} \)
83 \( 1 + (-7.91 - 9.42i)T + (-14.4 + 81.7i)T^{2} \)
89 \( 1 + (4.11 + 7.12i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-5.06 - 1.84i)T + (74.3 + 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18653914762749053179358117243, −9.277560445656055309215858071877, −8.559467250226618755510856520649, −7.70545642580981471353436884276, −6.91546174725447067660903985943, −5.60840858989154856683429845504, −5.00012497628393176918424815257, −4.40842443300941801540347144770, −2.38996901245337364677779946406, −1.18367485739765483238972563797, 0.45707789021977149642339163049, 2.82847721966244248482018113173, 3.72082140956458359986101252950, 4.52813606520763358122519226247, 5.93727971581501506959372184844, 6.46767810348504430375513193430, 7.57549635772972330341730256556, 8.006280711397907079760890556863, 9.666717190415979085241335003580, 10.44458164992840916829516991988

Graph of the $Z$-function along the critical line