Properties

Label 2-864-216.157-c1-0-3
Degree $2$
Conductor $864$
Sign $0.0616 - 0.998i$
Analytic cond. $6.89907$
Root an. cond. $2.62660$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.368 − 1.69i)3-s + (0.355 + 0.978i)5-s + (0.272 + 1.54i)7-s + (−2.72 − 1.24i)9-s + (−1.44 + 3.97i)11-s + (−4.33 + 5.17i)13-s + (1.78 − 0.242i)15-s + (−0.494 + 0.857i)17-s + (−2.70 + 1.55i)19-s + (2.71 + 0.107i)21-s + (−1.17 + 6.68i)23-s + (3.00 − 2.51i)25-s + (−3.11 + 4.15i)27-s + (−2.84 − 3.39i)29-s + (0.409 − 2.32i)31-s + ⋯
L(s)  = 1  + (0.212 − 0.977i)3-s + (0.159 + 0.437i)5-s + (0.102 + 0.583i)7-s + (−0.909 − 0.415i)9-s + (−0.436 + 1.19i)11-s + (−1.20 + 1.43i)13-s + (0.461 − 0.0625i)15-s + (−0.120 + 0.207i)17-s + (−0.619 + 0.357i)19-s + (0.591 + 0.0235i)21-s + (−0.245 + 1.39i)23-s + (0.600 − 0.503i)25-s + (−0.599 + 0.800i)27-s + (−0.529 − 0.630i)29-s + (0.0734 − 0.416i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0616 - 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0616 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(864\)    =    \(2^{5} \cdot 3^{3}\)
Sign: $0.0616 - 0.998i$
Analytic conductor: \(6.89907\)
Root analytic conductor: \(2.62660\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{864} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 864,\ (\ :1/2),\ 0.0616 - 0.998i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.744582 + 0.699998i\)
\(L(\frac12)\) \(\approx\) \(0.744582 + 0.699998i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-0.368 + 1.69i)T \)
good5 \( 1 + (-0.355 - 0.978i)T + (-3.83 + 3.21i)T^{2} \)
7 \( 1 + (-0.272 - 1.54i)T + (-6.57 + 2.39i)T^{2} \)
11 \( 1 + (1.44 - 3.97i)T + (-8.42 - 7.07i)T^{2} \)
13 \( 1 + (4.33 - 5.17i)T + (-2.25 - 12.8i)T^{2} \)
17 \( 1 + (0.494 - 0.857i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (2.70 - 1.55i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (1.17 - 6.68i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (2.84 + 3.39i)T + (-5.03 + 28.5i)T^{2} \)
31 \( 1 + (-0.409 + 2.32i)T + (-29.1 - 10.6i)T^{2} \)
37 \( 1 + (3.19 + 1.84i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + (2.44 + 2.04i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (-3.71 + 10.1i)T + (-32.9 - 27.6i)T^{2} \)
47 \( 1 + (-0.155 - 0.880i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 - 5.00iT - 53T^{2} \)
59 \( 1 + (-3.85 - 10.5i)T + (-45.1 + 37.9i)T^{2} \)
61 \( 1 + (5.41 - 0.954i)T + (57.3 - 20.8i)T^{2} \)
67 \( 1 + (-0.467 + 0.556i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (-2.52 + 4.36i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-7.01 - 12.1i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-6.78 + 5.68i)T + (13.7 - 77.7i)T^{2} \)
83 \( 1 + (-4.03 - 4.80i)T + (-14.4 + 81.7i)T^{2} \)
89 \( 1 + (-4.02 - 6.96i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (10.1 + 3.68i)T + (74.3 + 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.27318163951987963032820942384, −9.428729283462008921486770160470, −8.708677341227949962002600466430, −7.51005661975548822638979796578, −7.15160323888582831467552165025, −6.19174056723795907638448683852, −5.20400112278854198589769606089, −3.99444461453589020120416929403, −2.37011707948105714788681611698, −1.99796684244684306636462235400, 0.44591065389739924488654285835, 2.62630033340947302815364965378, 3.46846032038864915085332549374, 4.79054440035528729548350278810, 5.20439271282338953911035713194, 6.35853561140307131010925777489, 7.67851138345589798815076175928, 8.382601927628061656741244755855, 9.108232215032742482459198096609, 10.11435865469841871004514905172

Graph of the $Z$-function along the critical line