Properties

Label 2-864-216.157-c1-0-19
Degree $2$
Conductor $864$
Sign $0.160 + 0.987i$
Analytic cond. $6.89907$
Root an. cond. $2.62660$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.07 − 1.35i)3-s + (−0.0465 − 0.127i)5-s + (0.252 + 1.42i)7-s + (−0.693 + 2.91i)9-s + (0.771 − 2.11i)11-s + (0.634 − 0.755i)13-s + (−0.123 + 0.200i)15-s + (−0.439 + 0.760i)17-s + (5.20 − 3.00i)19-s + (1.67 − 1.87i)21-s + (0.748 − 4.24i)23-s + (3.81 − 3.20i)25-s + (4.71 − 2.19i)27-s + (−0.146 − 0.174i)29-s + (−1.15 + 6.56i)31-s + ⋯
L(s)  = 1  + (−0.619 − 0.784i)3-s + (−0.0208 − 0.0572i)5-s + (0.0952 + 0.540i)7-s + (−0.231 + 0.972i)9-s + (0.232 − 0.638i)11-s + (0.175 − 0.209i)13-s + (−0.0319 + 0.0518i)15-s + (−0.106 + 0.184i)17-s + (1.19 − 0.689i)19-s + (0.364 − 0.409i)21-s + (0.156 − 0.885i)23-s + (0.763 − 0.640i)25-s + (0.906 − 0.421i)27-s + (−0.0272 − 0.0324i)29-s + (−0.207 + 1.17i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.160 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.160 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(864\)    =    \(2^{5} \cdot 3^{3}\)
Sign: $0.160 + 0.987i$
Analytic conductor: \(6.89907\)
Root analytic conductor: \(2.62660\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{864} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 864,\ (\ :1/2),\ 0.160 + 0.987i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.906951 - 0.771306i\)
\(L(\frac12)\) \(\approx\) \(0.906951 - 0.771306i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.07 + 1.35i)T \)
good5 \( 1 + (0.0465 + 0.127i)T + (-3.83 + 3.21i)T^{2} \)
7 \( 1 + (-0.252 - 1.42i)T + (-6.57 + 2.39i)T^{2} \)
11 \( 1 + (-0.771 + 2.11i)T + (-8.42 - 7.07i)T^{2} \)
13 \( 1 + (-0.634 + 0.755i)T + (-2.25 - 12.8i)T^{2} \)
17 \( 1 + (0.439 - 0.760i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-5.20 + 3.00i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.748 + 4.24i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (0.146 + 0.174i)T + (-5.03 + 28.5i)T^{2} \)
31 \( 1 + (1.15 - 6.56i)T + (-29.1 - 10.6i)T^{2} \)
37 \( 1 + (9.25 + 5.34i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + (1.19 + 1.00i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (-1.11 + 3.05i)T + (-32.9 - 27.6i)T^{2} \)
47 \( 1 + (1.36 + 7.74i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 + 5.08iT - 53T^{2} \)
59 \( 1 + (3.15 + 8.68i)T + (-45.1 + 37.9i)T^{2} \)
61 \( 1 + (-12.3 + 2.18i)T + (57.3 - 20.8i)T^{2} \)
67 \( 1 + (5.90 - 7.03i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (-5.93 + 10.2i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-4.88 - 8.45i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (5.49 - 4.60i)T + (13.7 - 77.7i)T^{2} \)
83 \( 1 + (0.867 + 1.03i)T + (-14.4 + 81.7i)T^{2} \)
89 \( 1 + (3.19 + 5.54i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-0.779 - 0.283i)T + (74.3 + 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.17871417961137994950414845716, −8.801374474208341930320267665595, −8.446513838819005266525143008847, −7.19865491231022124883893197079, −6.61074390077010631224151379432, −5.55077727332748810639817462160, −4.96938091874952475664936933897, −3.38617054379134155501844473516, −2.16672237536689494905634259042, −0.71953053784229153310521226903, 1.29157357438384709450068393276, 3.19594218406845182958528813724, 4.10107210539680578054627242691, 5.01161044314798635247979381421, 5.85939017769088352384053848623, 6.93284293799449326712909270862, 7.65241078662521311587514582993, 8.954331536718949384490382782419, 9.645538333153219586082130366248, 10.29296830415493795493010832781

Graph of the $Z$-function along the critical line