Properties

Label 2-864-216.157-c1-0-11
Degree $2$
Conductor $864$
Sign $0.812 - 0.583i$
Analytic cond. $6.89907$
Root an. cond. $2.62660$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.195 − 1.72i)3-s + (1.34 + 3.70i)5-s + (−0.00177 − 0.0100i)7-s + (−2.92 + 0.673i)9-s + (−0.343 + 0.944i)11-s + (2.57 − 3.06i)13-s + (6.11 − 3.04i)15-s + (−0.948 + 1.64i)17-s + (3.76 − 2.17i)19-s + (−0.0169 + 0.00502i)21-s + (−1.19 + 6.79i)23-s + (−8.06 + 6.77i)25-s + (1.73 + 4.89i)27-s + (3.82 + 4.56i)29-s + (−1.38 + 7.85i)31-s + ⋯
L(s)  = 1  + (−0.112 − 0.993i)3-s + (0.602 + 1.65i)5-s + (−0.000670 − 0.00380i)7-s + (−0.974 + 0.224i)9-s + (−0.103 + 0.284i)11-s + (0.713 − 0.850i)13-s + (1.57 − 0.786i)15-s + (−0.230 + 0.398i)17-s + (0.863 − 0.498i)19-s + (−0.00370 + 0.00109i)21-s + (−0.249 + 1.41i)23-s + (−1.61 + 1.35i)25-s + (0.333 + 0.942i)27-s + (0.710 + 0.847i)29-s + (−0.248 + 1.41i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.812 - 0.583i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.812 - 0.583i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(864\)    =    \(2^{5} \cdot 3^{3}\)
Sign: $0.812 - 0.583i$
Analytic conductor: \(6.89907\)
Root analytic conductor: \(2.62660\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{864} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 864,\ (\ :1/2),\ 0.812 - 0.583i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.50353 + 0.483887i\)
\(L(\frac12)\) \(\approx\) \(1.50353 + 0.483887i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.195 + 1.72i)T \)
good5 \( 1 + (-1.34 - 3.70i)T + (-3.83 + 3.21i)T^{2} \)
7 \( 1 + (0.00177 + 0.0100i)T + (-6.57 + 2.39i)T^{2} \)
11 \( 1 + (0.343 - 0.944i)T + (-8.42 - 7.07i)T^{2} \)
13 \( 1 + (-2.57 + 3.06i)T + (-2.25 - 12.8i)T^{2} \)
17 \( 1 + (0.948 - 1.64i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-3.76 + 2.17i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (1.19 - 6.79i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (-3.82 - 4.56i)T + (-5.03 + 28.5i)T^{2} \)
31 \( 1 + (1.38 - 7.85i)T + (-29.1 - 10.6i)T^{2} \)
37 \( 1 + (-6.65 - 3.84i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + (-4.44 - 3.73i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (-1.42 + 3.91i)T + (-32.9 - 27.6i)T^{2} \)
47 \( 1 + (1.37 + 7.79i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 - 2.25iT - 53T^{2} \)
59 \( 1 + (2.24 + 6.17i)T + (-45.1 + 37.9i)T^{2} \)
61 \( 1 + (0.106 - 0.0188i)T + (57.3 - 20.8i)T^{2} \)
67 \( 1 + (2.47 - 2.94i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (0.442 - 0.766i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (7.26 + 12.5i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (2.46 - 2.06i)T + (13.7 - 77.7i)T^{2} \)
83 \( 1 + (-9.76 - 11.6i)T + (-14.4 + 81.7i)T^{2} \)
89 \( 1 + (1.45 + 2.51i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (12.0 + 4.37i)T + (74.3 + 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.46255007002618983077961436995, −9.510844411685945625642996646450, −8.370904046475625818122042909844, −7.42458502570017526093243613142, −6.88980707632490872678555932252, −6.05975481912910836771752210926, −5.33955156844187355618496183537, −3.40446814355597309638880454380, −2.73888585388735692113566276743, −1.48354077649000370521955187374, 0.845443340418916952269826724371, 2.47238625078927634464097093303, 4.15166810711939344055641278059, 4.53287695234133088653240052229, 5.69350506781201417828740697922, 6.13872513907800192396940652204, 7.87103608561002419880860400827, 8.677914088116237984868455301878, 9.298582457603579541495800134733, 9.801054070780531496184683478739

Graph of the $Z$-function along the critical line