Properties

Label 2-864-1.1-c1-0-4
Degree $2$
Conductor $864$
Sign $1$
Analytic cond. $6.89907$
Root an. cond. $2.62660$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 7-s − 2·11-s + 13-s + 6·17-s + 5·19-s + 6·23-s − 25-s + 8·29-s − 8·31-s − 2·35-s − 5·37-s + 8·41-s + 4·43-s − 10·47-s − 6·49-s + 4·53-s − 4·55-s + 14·59-s + 3·61-s + 2·65-s + 13·67-s − 4·71-s + 9·73-s + 2·77-s − 11·79-s − 12·83-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.377·7-s − 0.603·11-s + 0.277·13-s + 1.45·17-s + 1.14·19-s + 1.25·23-s − 1/5·25-s + 1.48·29-s − 1.43·31-s − 0.338·35-s − 0.821·37-s + 1.24·41-s + 0.609·43-s − 1.45·47-s − 6/7·49-s + 0.549·53-s − 0.539·55-s + 1.82·59-s + 0.384·61-s + 0.248·65-s + 1.58·67-s − 0.474·71-s + 1.05·73-s + 0.227·77-s − 1.23·79-s − 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(864\)    =    \(2^{5} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(6.89907\)
Root analytic conductor: \(2.62660\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{864} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 864,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.832241167\)
\(L(\frac12)\) \(\approx\) \(1.832241167\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 5 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 10 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 - 14 T + p T^{2} \)
61 \( 1 - 3 T + p T^{2} \)
67 \( 1 - 13 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 - 9 T + p T^{2} \)
79 \( 1 + 11 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 - T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.962243345437013682136437852358, −9.575855197821009154746500918089, −8.533880796224462110655852150189, −7.57195972780640499908950962067, −6.71110929993388671275045148454, −5.61589452328752483822361023345, −5.17169676997140923385106697279, −3.58529057716851715664298339034, −2.66421157652505017015711163951, −1.19497678164755144713673653335, 1.19497678164755144713673653335, 2.66421157652505017015711163951, 3.58529057716851715664298339034, 5.17169676997140923385106697279, 5.61589452328752483822361023345, 6.71110929993388671275045148454, 7.57195972780640499908950962067, 8.533880796224462110655852150189, 9.575855197821009154746500918089, 9.962243345437013682136437852358

Graph of the $Z$-function along the critical line