Properties

Label 2-8624-1.1-c1-0-96
Degree $2$
Conductor $8624$
Sign $-1$
Analytic cond. $68.8629$
Root an. cond. $8.29837$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.56·3-s − 3.56·5-s − 0.561·9-s + 11-s + 5.12·13-s + 5.56·15-s − 2·17-s − 4·19-s − 2.43·23-s + 7.68·25-s + 5.56·27-s − 5.12·29-s − 5.56·31-s − 1.56·33-s − 7.56·37-s − 8·39-s + 1.12·41-s + 7.12·43-s + 2·45-s + 8·47-s + 3.12·51-s + 12.2·53-s − 3.56·55-s + 6.24·57-s + 7.80·59-s − 1.12·61-s − 18.2·65-s + ⋯
L(s)  = 1  − 0.901·3-s − 1.59·5-s − 0.187·9-s + 0.301·11-s + 1.42·13-s + 1.43·15-s − 0.485·17-s − 0.917·19-s − 0.508·23-s + 1.53·25-s + 1.07·27-s − 0.951·29-s − 0.998·31-s − 0.271·33-s − 1.24·37-s − 1.28·39-s + 0.175·41-s + 1.08·43-s + 0.298·45-s + 1.16·47-s + 0.437·51-s + 1.68·53-s − 0.480·55-s + 0.827·57-s + 1.01·59-s − 0.143·61-s − 2.26·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8624\)    =    \(2^{4} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(68.8629\)
Root analytic conductor: \(8.29837\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8624,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 + 1.56T + 3T^{2} \)
5 \( 1 + 3.56T + 5T^{2} \)
13 \( 1 - 5.12T + 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 + 2.43T + 23T^{2} \)
29 \( 1 + 5.12T + 29T^{2} \)
31 \( 1 + 5.56T + 31T^{2} \)
37 \( 1 + 7.56T + 37T^{2} \)
41 \( 1 - 1.12T + 41T^{2} \)
43 \( 1 - 7.12T + 43T^{2} \)
47 \( 1 - 8T + 47T^{2} \)
53 \( 1 - 12.2T + 53T^{2} \)
59 \( 1 - 7.80T + 59T^{2} \)
61 \( 1 + 1.12T + 61T^{2} \)
67 \( 1 + 9.56T + 67T^{2} \)
71 \( 1 - 8.68T + 71T^{2} \)
73 \( 1 + 5.12T + 73T^{2} \)
79 \( 1 - 11.1T + 79T^{2} \)
83 \( 1 - 0.876T + 83T^{2} \)
89 \( 1 + 2.68T + 89T^{2} \)
97 \( 1 + 15.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.29985050209686827612658759846, −6.81359986000869526084346729084, −5.96563997839194957250398797818, −5.51158118552307337121038958690, −4.44993997262429244241923068084, −3.93602802262462089723564526126, −3.41041385135408346467192367714, −2.14224078262278293648941240445, −0.866503153579054288206624202194, 0, 0.866503153579054288206624202194, 2.14224078262278293648941240445, 3.41041385135408346467192367714, 3.93602802262462089723564526126, 4.44993997262429244241923068084, 5.51158118552307337121038958690, 5.96563997839194957250398797818, 6.81359986000869526084346729084, 7.29985050209686827612658759846

Graph of the $Z$-function along the critical line