Properties

Label 2-8624-1.1-c1-0-139
Degree $2$
Conductor $8624$
Sign $-1$
Analytic cond. $68.8629$
Root an. cond. $8.29837$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.82·3-s + 1.41·5-s + 5.00·9-s + 11-s − 1.41·13-s − 4.00·15-s + 7.07·17-s − 2.82·19-s − 4·23-s − 2.99·25-s − 5.65·27-s + 5.65·31-s − 2.82·33-s − 8·37-s + 4.00·39-s + 9.89·41-s − 4·43-s + 7.07·45-s − 20.0·51-s − 6·53-s + 1.41·55-s + 8.00·57-s − 8.48·59-s − 1.41·61-s − 2.00·65-s + 8·67-s + 11.3·69-s + ⋯
L(s)  = 1  − 1.63·3-s + 0.632·5-s + 1.66·9-s + 0.301·11-s − 0.392·13-s − 1.03·15-s + 1.71·17-s − 0.648·19-s − 0.834·23-s − 0.599·25-s − 1.08·27-s + 1.01·31-s − 0.492·33-s − 1.31·37-s + 0.640·39-s + 1.54·41-s − 0.609·43-s + 1.05·45-s − 2.80·51-s − 0.824·53-s + 0.190·55-s + 1.05·57-s − 1.10·59-s − 0.181·61-s − 0.248·65-s + 0.977·67-s + 1.36·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8624\)    =    \(2^{4} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(68.8629\)
Root analytic conductor: \(8.29837\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8624,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 + 2.82T + 3T^{2} \)
5 \( 1 - 1.41T + 5T^{2} \)
13 \( 1 + 1.41T + 13T^{2} \)
17 \( 1 - 7.07T + 17T^{2} \)
19 \( 1 + 2.82T + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 5.65T + 31T^{2} \)
37 \( 1 + 8T + 37T^{2} \)
41 \( 1 - 9.89T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + 8.48T + 59T^{2} \)
61 \( 1 + 1.41T + 61T^{2} \)
67 \( 1 - 8T + 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 + 1.41T + 73T^{2} \)
79 \( 1 + 16T + 79T^{2} \)
83 \( 1 - 2.82T + 83T^{2} \)
89 \( 1 + 15.5T + 89T^{2} \)
97 \( 1 - 9.89T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.29539316156711661568897171555, −6.47726598872353544502337158923, −5.95446841228358925288734060977, −5.56911407749023556267444126448, −4.79348895076068348219361886611, −4.13480041904322698132155791797, −3.10662169369221883707936802326, −1.91441368626081719640283111893, −1.12113155743030734812238244327, 0, 1.12113155743030734812238244327, 1.91441368626081719640283111893, 3.10662169369221883707936802326, 4.13480041904322698132155791797, 4.79348895076068348219361886611, 5.56911407749023556267444126448, 5.95446841228358925288734060977, 6.47726598872353544502337158923, 7.29539316156711661568897171555

Graph of the $Z$-function along the critical line