Properties

Label 2-85e2-1.1-c1-0-383
Degree $2$
Conductor $7225$
Sign $-1$
Analytic cond. $57.6919$
Root an. cond. $7.59551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.48·2-s + 1.67·3-s + 0.193·4-s + 2.48·6-s + 1.28·7-s − 2.67·8-s − 0.193·9-s − 0.481·11-s + 0.324·12-s + 2.15·13-s + 1.90·14-s − 4.35·16-s − 0.287·18-s − 3.35·19-s + 2.15·21-s − 0.712·22-s − 8.24·23-s − 4.48·24-s + 3.19·26-s − 5.35·27-s + 0.249·28-s − 0.649·29-s − 1.83·31-s − 1.09·32-s − 0.806·33-s − 0.0376·36-s + 4.31·37-s + ⋯
L(s)  = 1  + 1.04·2-s + 0.967·3-s + 0.0969·4-s + 1.01·6-s + 0.486·7-s − 0.945·8-s − 0.0646·9-s − 0.145·11-s + 0.0937·12-s + 0.598·13-s + 0.509·14-s − 1.08·16-s − 0.0677·18-s − 0.768·19-s + 0.470·21-s − 0.151·22-s − 1.72·23-s − 0.914·24-s + 0.626·26-s − 1.02·27-s + 0.0471·28-s − 0.120·29-s − 0.328·31-s − 0.193·32-s − 0.140·33-s − 0.00626·36-s + 0.708·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7225\)    =    \(5^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(57.6919\)
Root analytic conductor: \(7.59551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7225,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 \)
good2 \( 1 - 1.48T + 2T^{2} \)
3 \( 1 - 1.67T + 3T^{2} \)
7 \( 1 - 1.28T + 7T^{2} \)
11 \( 1 + 0.481T + 11T^{2} \)
13 \( 1 - 2.15T + 13T^{2} \)
19 \( 1 + 3.35T + 19T^{2} \)
23 \( 1 + 8.24T + 23T^{2} \)
29 \( 1 + 0.649T + 29T^{2} \)
31 \( 1 + 1.83T + 31T^{2} \)
37 \( 1 - 4.31T + 37T^{2} \)
41 \( 1 + 11.2T + 41T^{2} \)
43 \( 1 - 8.15T + 43T^{2} \)
47 \( 1 - 6.54T + 47T^{2} \)
53 \( 1 + 8.57T + 53T^{2} \)
59 \( 1 + 4.96T + 59T^{2} \)
61 \( 1 - 2.83T + 61T^{2} \)
67 \( 1 + 4.93T + 67T^{2} \)
71 \( 1 - 14.5T + 71T^{2} \)
73 \( 1 + 13.3T + 73T^{2} \)
79 \( 1 - 9.05T + 79T^{2} \)
83 \( 1 + 13.4T + 83T^{2} \)
89 \( 1 + 16.7T + 89T^{2} \)
97 \( 1 + 3.66T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79735833372565792864905755437, −6.70054531931396002341979540181, −5.96682764989111067632689206705, −5.46891691289771136122016079469, −4.46960559671611935088178275268, −3.99804831141305090356522148975, −3.28718335407292617876771505873, −2.51097472273898202800578433628, −1.71854695616944762347455401873, 0, 1.71854695616944762347455401873, 2.51097472273898202800578433628, 3.28718335407292617876771505873, 3.99804831141305090356522148975, 4.46960559671611935088178275268, 5.46891691289771136122016079469, 5.96682764989111067632689206705, 6.70054531931396002341979540181, 7.79735833372565792864905755437

Graph of the $Z$-function along the critical line