Properties

Label 2-8550-1.1-c1-0-84
Degree $2$
Conductor $8550$
Sign $1$
Analytic cond. $68.2720$
Root an. cond. $8.26269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 4.41·7-s + 8-s + 1.41·11-s + 5.82·13-s + 4.41·14-s + 16-s − 17-s − 19-s + 1.41·22-s − 0.757·23-s + 5.82·26-s + 4.41·28-s + 0.171·29-s + 6.24·31-s + 32-s − 34-s − 8.48·37-s − 38-s + 4.24·41-s + 1.75·43-s + 1.41·44-s − 0.757·46-s + 12.4·49-s + 5.82·52-s − 5.48·53-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 1.66·7-s + 0.353·8-s + 0.426·11-s + 1.61·13-s + 1.17·14-s + 0.250·16-s − 0.242·17-s − 0.229·19-s + 0.301·22-s − 0.157·23-s + 1.14·26-s + 0.834·28-s + 0.0318·29-s + 1.12·31-s + 0.176·32-s − 0.171·34-s − 1.39·37-s − 0.162·38-s + 0.662·41-s + 0.267·43-s + 0.213·44-s − 0.111·46-s + 1.78·49-s + 0.808·52-s − 0.753·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8550\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(68.2720\)
Root analytic conductor: \(8.26269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.966225998\)
\(L(\frac12)\) \(\approx\) \(4.966225998\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good7 \( 1 - 4.41T + 7T^{2} \)
11 \( 1 - 1.41T + 11T^{2} \)
13 \( 1 - 5.82T + 13T^{2} \)
17 \( 1 + T + 17T^{2} \)
23 \( 1 + 0.757T + 23T^{2} \)
29 \( 1 - 0.171T + 29T^{2} \)
31 \( 1 - 6.24T + 31T^{2} \)
37 \( 1 + 8.48T + 37T^{2} \)
41 \( 1 - 4.24T + 41T^{2} \)
43 \( 1 - 1.75T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 5.48T + 53T^{2} \)
59 \( 1 + 6.89T + 59T^{2} \)
61 \( 1 - 14.2T + 61T^{2} \)
67 \( 1 - 4.75T + 67T^{2} \)
71 \( 1 - 13.4T + 71T^{2} \)
73 \( 1 - 11.4T + 73T^{2} \)
79 \( 1 + 6.48T + 79T^{2} \)
83 \( 1 + 14.4T + 83T^{2} \)
89 \( 1 + 7.07T + 89T^{2} \)
97 \( 1 + 0.343T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.916198572879353642813300380482, −6.90887708408965047979866863337, −6.38626063195253612822281471128, −5.55814047309776613225682615586, −5.01576708376672632726759356209, −4.17580433616505669081611166662, −3.78585933314799342505132112432, −2.65624352072039710110842186887, −1.72455973947737535497831794449, −1.10142381880238312606238711056, 1.10142381880238312606238711056, 1.72455973947737535497831794449, 2.65624352072039710110842186887, 3.78585933314799342505132112432, 4.17580433616505669081611166662, 5.01576708376672632726759356209, 5.55814047309776613225682615586, 6.38626063195253612822281471128, 6.90887708408965047979866863337, 7.916198572879353642813300380482

Graph of the $Z$-function along the critical line