L(s) = 1 | + 2-s + 4-s + 4.69·7-s + 8-s − 6.40·11-s − 1.06·13-s + 4.69·14-s + 16-s + 1.91·17-s − 19-s − 6.40·22-s + 1.79·23-s − 1.06·26-s + 4.69·28-s − 2.93·29-s − 5.55·31-s + 32-s + 1.91·34-s + 11.4·37-s − 38-s + 1.14·41-s + 3.55·43-s − 6.40·44-s + 1.79·46-s + 10.8·47-s + 15.0·49-s − 1.06·52-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + 1.77·7-s + 0.353·8-s − 1.93·11-s − 0.295·13-s + 1.25·14-s + 0.250·16-s + 0.465·17-s − 0.229·19-s − 1.36·22-s + 0.374·23-s − 0.208·26-s + 0.887·28-s − 0.545·29-s − 0.997·31-s + 0.176·32-s + 0.328·34-s + 1.87·37-s − 0.162·38-s + 0.178·41-s + 0.542·43-s − 0.966·44-s + 0.264·46-s + 1.58·47-s + 2.14·49-s − 0.147·52-s + ⋯ |
Λ(s)=(=(8550s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8550s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.795571463 |
L(21) |
≈ |
3.795571463 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 5 | 1 |
| 19 | 1+T |
good | 7 | 1−4.69T+7T2 |
| 11 | 1+6.40T+11T2 |
| 13 | 1+1.06T+13T2 |
| 17 | 1−1.91T+17T2 |
| 23 | 1−1.79T+23T2 |
| 29 | 1+2.93T+29T2 |
| 31 | 1+5.55T+31T2 |
| 37 | 1−11.4T+37T2 |
| 41 | 1−1.14T+41T2 |
| 43 | 1−3.55T+43T2 |
| 47 | 1−10.8T+47T2 |
| 53 | 1+8.69T+53T2 |
| 59 | 1−5.63T+59T2 |
| 61 | 1+3.39T+61T2 |
| 67 | 1−8.82T+67T2 |
| 71 | 1−1.42T+71T2 |
| 73 | 1−12.6T+73T2 |
| 79 | 1+1.96T+79T2 |
| 83 | 1−16.2T+83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1−14.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.62533134698806928934619752650, −7.44210278199316324917238706120, −6.16848512766407757022816162584, −5.43550523823473992024385017535, −5.04740447966574022547986681665, −4.47884954130528751319258693914, −3.56655545436772841553862821170, −2.46843252328081942670239562208, −2.10658192690874479963155257130, −0.855546094780470228366999836326,
0.855546094780470228366999836326, 2.10658192690874479963155257130, 2.46843252328081942670239562208, 3.56655545436772841553862821170, 4.47884954130528751319258693914, 5.04740447966574022547986681665, 5.43550523823473992024385017535, 6.16848512766407757022816162584, 7.44210278199316324917238706120, 7.62533134698806928934619752650