Properties

Label 2-8550-1.1-c1-0-44
Degree $2$
Conductor $8550$
Sign $1$
Analytic cond. $68.2720$
Root an. cond. $8.26269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 1.58·7-s + 8-s − 1.41·11-s + 0.171·13-s + 1.58·14-s + 16-s − 17-s − 19-s − 1.41·22-s − 9.24·23-s + 0.171·26-s + 1.58·28-s + 5.82·29-s − 2.24·31-s + 32-s − 34-s + 8.48·37-s − 38-s − 4.24·41-s + 10.2·43-s − 1.41·44-s − 9.24·46-s − 4.48·49-s + 0.171·52-s + 11.4·53-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 0.599·7-s + 0.353·8-s − 0.426·11-s + 0.0475·13-s + 0.423·14-s + 0.250·16-s − 0.242·17-s − 0.229·19-s − 0.301·22-s − 1.92·23-s + 0.0336·26-s + 0.299·28-s + 1.08·29-s − 0.402·31-s + 0.176·32-s − 0.171·34-s + 1.39·37-s − 0.162·38-s − 0.662·41-s + 1.56·43-s − 0.213·44-s − 1.36·46-s − 0.640·49-s + 0.0237·52-s + 1.57·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8550\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(68.2720\)
Root analytic conductor: \(8.26269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.417655323\)
\(L(\frac12)\) \(\approx\) \(3.417655323\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good7 \( 1 - 1.58T + 7T^{2} \)
11 \( 1 + 1.41T + 11T^{2} \)
13 \( 1 - 0.171T + 13T^{2} \)
17 \( 1 + T + 17T^{2} \)
23 \( 1 + 9.24T + 23T^{2} \)
29 \( 1 - 5.82T + 29T^{2} \)
31 \( 1 + 2.24T + 31T^{2} \)
37 \( 1 - 8.48T + 37T^{2} \)
41 \( 1 + 4.24T + 41T^{2} \)
43 \( 1 - 10.2T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 11.4T + 53T^{2} \)
59 \( 1 - 12.8T + 59T^{2} \)
61 \( 1 - 5.75T + 61T^{2} \)
67 \( 1 - 13.2T + 67T^{2} \)
71 \( 1 - 10.5T + 71T^{2} \)
73 \( 1 + 5.48T + 73T^{2} \)
79 \( 1 - 10.4T + 79T^{2} \)
83 \( 1 - 2.48T + 83T^{2} \)
89 \( 1 - 7.07T + 89T^{2} \)
97 \( 1 + 11.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.908348515390718593603931495463, −6.97283679067666865370931078098, −6.31701654619386153804348470004, −5.62964146597898368826261347087, −5.00485273216513622461034039567, −4.20467668668607205994053930669, −3.72324330251560670835138603376, −2.51612897798450994033934438120, −2.08197217236639860443911343436, −0.803923554419488282220457854311, 0.803923554419488282220457854311, 2.08197217236639860443911343436, 2.51612897798450994033934438120, 3.72324330251560670835138603376, 4.20467668668607205994053930669, 5.00485273216513622461034039567, 5.62964146597898368826261347087, 6.31701654619386153804348470004, 6.97283679067666865370931078098, 7.908348515390718593603931495463

Graph of the $Z$-function along the critical line