Properties

Label 2-8550-1.1-c1-0-136
Degree $2$
Conductor $8550$
Sign $-1$
Analytic cond. $68.2720$
Root an. cond. $8.26269$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s + 4·11-s − 2·13-s + 16-s − 6·17-s − 19-s + 4·22-s − 4·23-s − 2·26-s + 2·29-s + 4·31-s + 32-s − 6·34-s − 10·37-s − 38-s − 10·41-s − 4·43-s + 4·44-s − 4·46-s − 4·47-s − 7·49-s − 2·52-s − 10·53-s + 2·58-s − 12·59-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s + 1.20·11-s − 0.554·13-s + 1/4·16-s − 1.45·17-s − 0.229·19-s + 0.852·22-s − 0.834·23-s − 0.392·26-s + 0.371·29-s + 0.718·31-s + 0.176·32-s − 1.02·34-s − 1.64·37-s − 0.162·38-s − 1.56·41-s − 0.609·43-s + 0.603·44-s − 0.589·46-s − 0.583·47-s − 49-s − 0.277·52-s − 1.37·53-s + 0.262·58-s − 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8550\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(68.2720\)
Root analytic conductor: \(8.26269\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{8550} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8550,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.16572566000611353960290039950, −6.50271377237497950200773863673, −6.35204354141188104279892925446, −5.11473728281628583321768386435, −4.70186501838282386732672991488, −3.89166888903164994346056954541, −3.25813054222812312787723128525, −2.19904673625228402444990491932, −1.55318480809200990400102458429, 0, 1.55318480809200990400102458429, 2.19904673625228402444990491932, 3.25813054222812312787723128525, 3.89166888903164994346056954541, 4.70186501838282386732672991488, 5.11473728281628583321768386435, 6.35204354141188104279892925446, 6.50271377237497950200773863673, 7.16572566000611353960290039950

Graph of the $Z$-function along the critical line