Properties

Label 2-8550-1.1-c1-0-116
Degree $2$
Conductor $8550$
Sign $-1$
Analytic cond. $68.2720$
Root an. cond. $8.26269$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s + 4·11-s + 2·13-s + 16-s + 6·17-s − 19-s − 4·22-s − 6·23-s − 2·26-s + 2·29-s − 6·31-s − 32-s − 6·34-s − 10·37-s + 38-s − 6·43-s + 4·44-s + 6·46-s − 6·47-s − 7·49-s + 2·52-s − 10·53-s − 2·58-s − 2·59-s − 6·61-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s + 1.20·11-s + 0.554·13-s + 1/4·16-s + 1.45·17-s − 0.229·19-s − 0.852·22-s − 1.25·23-s − 0.392·26-s + 0.371·29-s − 1.07·31-s − 0.176·32-s − 1.02·34-s − 1.64·37-s + 0.162·38-s − 0.914·43-s + 0.603·44-s + 0.884·46-s − 0.875·47-s − 49-s + 0.277·52-s − 1.37·53-s − 0.262·58-s − 0.260·59-s − 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8550\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(68.2720\)
Root analytic conductor: \(8.26269\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{8550} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8550,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 6 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 2 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 16 T + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.49335383853333277134079434207, −6.81293026419017619986092054380, −6.17019372751219946380645684475, −5.58002922598813440621563593223, −4.59999954185075683866657160031, −3.61660819878387599656062509431, −3.22425572364335566352331352292, −1.80892389068348636997497142842, −1.36604135643291172198037758275, 0, 1.36604135643291172198037758275, 1.80892389068348636997497142842, 3.22425572364335566352331352292, 3.61660819878387599656062509431, 4.59999954185075683866657160031, 5.58002922598813440621563593223, 6.17019372751219946380645684475, 6.81293026419017619986092054380, 7.49335383853333277134079434207

Graph of the $Z$-function along the critical line