Properties

Label 2-8550-1.1-c1-0-11
Degree $2$
Conductor $8550$
Sign $1$
Analytic cond. $68.2720$
Root an. cond. $8.26269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 0.193·7-s − 8-s − 0.514·11-s − 3.12·13-s + 0.193·14-s + 16-s − 2.83·17-s + 19-s + 0.514·22-s + 2.32·23-s + 3.12·26-s − 0.193·28-s + 0.164·29-s − 9.05·31-s − 32-s + 2.83·34-s − 3.02·37-s − 38-s + 9.96·41-s − 5.51·43-s − 0.514·44-s − 2.32·46-s + 1.70·47-s − 6.96·49-s − 3.12·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.0730·7-s − 0.353·8-s − 0.155·11-s − 0.867·13-s + 0.0516·14-s + 0.250·16-s − 0.687·17-s + 0.229·19-s + 0.109·22-s + 0.483·23-s + 0.613·26-s − 0.0365·28-s + 0.0306·29-s − 1.62·31-s − 0.176·32-s + 0.486·34-s − 0.497·37-s − 0.162·38-s + 1.55·41-s − 0.840·43-s − 0.0775·44-s − 0.342·46-s + 0.249·47-s − 0.994·49-s − 0.433·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8550\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(68.2720\)
Root analytic conductor: \(8.26269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{8550} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9583594502\)
\(L(\frac12)\) \(\approx\) \(0.9583594502\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good7 \( 1 + 0.193T + 7T^{2} \)
11 \( 1 + 0.514T + 11T^{2} \)
13 \( 1 + 3.12T + 13T^{2} \)
17 \( 1 + 2.83T + 17T^{2} \)
23 \( 1 - 2.32T + 23T^{2} \)
29 \( 1 - 0.164T + 29T^{2} \)
31 \( 1 + 9.05T + 31T^{2} \)
37 \( 1 + 3.02T + 37T^{2} \)
41 \( 1 - 9.96T + 41T^{2} \)
43 \( 1 + 5.51T + 43T^{2} \)
47 \( 1 - 1.70T + 47T^{2} \)
53 \( 1 + 2.90T + 53T^{2} \)
59 \( 1 - 13.9T + 59T^{2} \)
61 \( 1 - 5.92T + 61T^{2} \)
67 \( 1 + 4.22T + 67T^{2} \)
71 \( 1 - 3.16T + 71T^{2} \)
73 \( 1 - 8.37T + 73T^{2} \)
79 \( 1 - 6.02T + 79T^{2} \)
83 \( 1 + 12.8T + 83T^{2} \)
89 \( 1 + 9.01T + 89T^{2} \)
97 \( 1 - 8.89T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79020320707600902774845145586, −7.10302965411337986106585643359, −6.70822152820680212178004612805, −5.70268547511444385925728157917, −5.13156305196487188553955169591, −4.23642982897248093565322646159, −3.33223892638905564821696806457, −2.48269933570261974655670865807, −1.74894419392809213818377107149, −0.51874825983658149942052713891, 0.51874825983658149942052713891, 1.74894419392809213818377107149, 2.48269933570261974655670865807, 3.33223892638905564821696806457, 4.23642982897248093565322646159, 5.13156305196487188553955169591, 5.70268547511444385925728157917, 6.70822152820680212178004612805, 7.10302965411337986106585643359, 7.79020320707600902774845145586

Graph of the $Z$-function along the critical line