L(s) = 1 | − 4-s − i·5-s + 16-s − 2i·17-s − 19-s + i·20-s − 2i·23-s − 25-s + 2i·47-s + 49-s + 2·61-s − 64-s + 2i·68-s + 76-s − i·80-s + ⋯ |
L(s) = 1 | − 4-s − i·5-s + 16-s − 2i·17-s − 19-s + i·20-s − 2i·23-s − 25-s + 2i·47-s + 49-s + 2·61-s − 64-s + 2i·68-s + 76-s − i·80-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6862839031\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6862839031\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 19 | \( 1 + T \) |
good | 2 | \( 1 + T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + 2iT - T^{2} \) |
| 23 | \( 1 + 2iT - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - 2iT - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 2T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - 2iT - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.935224915325706876146880644565, −9.233680695753324646036289475510, −8.622554972135854310651242063969, −7.896313259826873230734736719258, −6.71051172070228487336639076565, −5.52956726641953847845006122904, −4.72730467283073990681562354768, −4.14212187204367362594602075666, −2.59228109815596430842835535724, −0.73410684909916266227780964106,
1.90073524500712755725850802148, 3.51522965472445254476240749136, 4.04005117855751908584612703180, 5.43089577767191624653108792806, 6.16485284536393311714688905889, 7.23354116876202208422031411645, 8.159786214993360024317458354109, 8.844812329386031709516243281533, 9.938023508716114438615412539379, 10.39362992561294684367144717927