Properties

Label 2-855-95.94-c0-0-1
Degree $2$
Conductor $855$
Sign $1$
Analytic cond. $0.426700$
Root an. cond. $0.653223$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 5-s + 2·11-s + 16-s + 19-s + 20-s + 25-s − 2·44-s + 49-s − 2·55-s − 2·61-s − 64-s − 76-s − 80-s − 95-s − 100-s + 2·101-s + ⋯
L(s)  = 1  − 4-s − 5-s + 2·11-s + 16-s + 19-s + 20-s + 25-s − 2·44-s + 49-s − 2·55-s − 2·61-s − 64-s − 76-s − 80-s − 95-s − 100-s + 2·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(855\)    =    \(3^{2} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(0.426700\)
Root analytic conductor: \(0.653223\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{855} (379, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 855,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7508262571\)
\(L(\frac12)\) \(\approx\) \(0.7508262571\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 + T^{2} \)
7 \( ( 1 - T )( 1 + T ) \)
11 \( ( 1 - T )^{2} \)
13 \( 1 + T^{2} \)
17 \( ( 1 - T )( 1 + T ) \)
23 \( ( 1 - T )( 1 + T ) \)
29 \( ( 1 - T )( 1 + T ) \)
31 \( ( 1 - T )( 1 + T ) \)
37 \( 1 + T^{2} \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( ( 1 - T )( 1 + T ) \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( 1 + T^{2} \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 + T )^{2} \)
67 \( 1 + T^{2} \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( ( 1 - T )( 1 + T ) \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( 1 + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.28779421471673768524189790270, −9.260276857120472535061526031545, −8.902620918268777374754762733311, −7.900857310226984383949826537656, −7.07786177591191312722904428978, −6.02587532039734194154641480246, −4.81742521785523930316284244708, −4.02943525995896816813128527339, −3.33358023614207416943421030004, −1.14991567077063894137476213631, 1.14991567077063894137476213631, 3.33358023614207416943421030004, 4.02943525995896816813128527339, 4.81742521785523930316284244708, 6.02587532039734194154641480246, 7.07786177591191312722904428978, 7.900857310226984383949826537656, 8.902620918268777374754762733311, 9.260276857120472535061526031545, 10.28779421471673768524189790270

Graph of the $Z$-function along the critical line